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Abstract

In biometrics, methods which are able to precisely adapt to the biometric features of users
are much sought after. They use various methods of artificial intelligence, in particular
methods from the group of soft computing. In this paper, we focus on on-line signature
verification. Such signatures are complex objects described not only by the shape but also
by the dynamics of the signing process. In standard devices used for signature acquisi-
tion (with an LCD touch screen) this dynamics may include pen velocity, but sometimes
other types of signals are also available, e.g. pen pressure on the screen surface (e.g. in
graphic tablets), the angle between the pen and the screen surface, etc. The precision of
the on-line signature dynamics processing has been a motivational springboard for devel-
oping methods that use signature partitioning. Partitioning uses a well-known principle
of decomposing the problem into smaller ones. In this paper, we propose a new parti-
tioning algorithm that uses capabilities of the algorithms based on populations and fuzzy
systems. Evolutionary-fuzzy partitioning eliminates the need to average dynamic wave-
forms in created partitions because it replaces them. Evolutionary separation of partitions
results in a better matching of partitions with reference signatures, eliminates dispro-
portions between the number of points describing dynamics in partitions, eliminates the
impact of random values, separates partitions related to the signing stage and its dynamics
(e.g. high and low velocity of signing, where high and low are imprecise-fuzzy concepts).
The operation of the presented algorithm has been tested using the well-known BioSecure
DS2 database of real dynamic signatures.

Keywords: biometrics, on-line signature, dynamic signature, dynamic signature verifica-
tion, evolutionary-fuzzy signature partitioning, horizontal and vertical partitioning.
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1 Introduction

The security of information systems is associ-
ated with the security of the methods used in an
identity verification of their users. Such verifica-
tion may be based on the analysis of biometric fea-
tures. Behavioral features describing human be-
havior are difficult to forge. The on-line signa-
ture takes an important place in the group of these
characteristics [20] because it is not controversial
and is a commonly acceptable way of identity ver-
ification. However, as a result, on-line signatures
can be exposed to numerous falsification attempts.
Therefore, we should aim at high precision in the
analysis of waveforms describing the dynamics of
the signature. Such dynamics describes individ-
ual habits of users very well. Therefore, effective
methods for on-line signature verification are still
being sought. For this purpose, artificial intelli-
gence methods are used, especially those from the
soft computing group [4, 10, 39, 41, 43, 44, 46].
Methods used in the on-line signature verification
can also be used in the analysis of other behavioral
attributes because they can be encoded in a similar
way in which signatures are.

1.1 Methods presented in the literature

The precision of on-line signature processing
has acted as a motivational springboard for devel-
oping methods that use the well-known principle
of problem decomposition. In the context of on-
line signature verification, this approach is known
in the literature as the regional approach [20]. Dy-
namic signature partitioning is consistent with this
approach.

In [16] signatures are segmented into strokes
and for each of them, a reliability measure is com-
puted on the basis of the feature values which be-
long to the current stroke. In [21] a stroke-based
algorithm that splits the velocity signal into three
bands was presented. This approach assumes that
high and low-velocity bands of the signal are un-
stable, whereas the medium-velocity band is use-
able for discrimination purposes. In [12] a signa-
ture verification using Hidden Markov Models is
presented. In [17] the authors present an approach
in which decomposition of the signature shape is
performed on the basis of the pressure and veloc-
ity profiles. Pressure and velocity are partitioned

into high and low regions and their underlying hor-
izontal and vertical trajectories are extracted on the
basis of these subsets. In the classification phase,
only the most stable partition is used. Classification
is performed using a decision boundary determined
in the two-dimensional space. In [9] and [26] a
multi-section vector quantization algorithm for on-
line signature recognition is presented. This method
is an improved version of the classical vector quan-
tization. In [7] presented is an approach based on
co-called hybrid partitions created as intersections
of separated horizontal and vertical sections which
have a fixed size. The signature is classified using
a flexible-fuzzy system. [38] presents a description
of the method which selects the most characteris-
tic partitions in the context of each individual sepa-
rately.

In this work, we propose a new partitioning
algorithm that uses the capabilities of fuzzy sys-
tems [3] and population-based algorithms [28].
Population-based algorithms are currently often
used in real applications as the main and support-
ing methods alike [2, 24, 34, 43]. The main feature
of the presented algorithm is that it eliminates the
need to average dynamic waveforms in created par-
titions because it actually replaces them.

1.2 Method presented in this paper

A summary of the main features of on-line
signature verification methods representing a re-
gional approach is summarized in Table 1. The
evolutionary-fuzzy method of signature partitioning
presented in this paper is distinguished by the fol-
lowing main features:

— It makes partitions better suited to reference sig-
natures. Evolutionary fitting is not based on av-
eraging of signal groups as in the methods pre-
viously presented. Signal averaging is correct
but it hinders processing of outlier values. Evo-
lutionary mapping of signature points to hybrid-
type partitions has not been considered in the lit-
erature before.

— It eliminates disproportions between the number
of points in separated partitions. This approach
can be conveniently implemented in evolution-
ary partitioning and is associated with an appro-
priate definition of the evaluation function of the
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individuals in a population. Elimination of dis-
proportion in the number of points in hybrid par-
titions has not been previously considered in the
literature.

Table 1. Main characteristics of the algorithms for
the on-line signature verification based on the
regional approach (f1 - Does the method divide the
signature into parts in order to increase the
efficiency of signature verification accuracy?
f2 - Does the method focus on fast performance?
f3 - Does the method evaluate signature stability of
in selected parts of the signature? f4 - Does the
method take into account the hierarchy of selected
parts of the signature in the classification process?
f5 - Is the way of classification interpretable?)
f6 - Is signature partitioning supported by a
population-based algorithm?

Characteristics
of the method

f1 £2 3 f4 S 16

Huang and Hong [16]
Khan et al. [21]
Fierrez et al. [12]
Ibrahim et al. [17]

yesno yesyesno no
yesno yesno no no
yesno no no no no
yesno yesno no no
Faindez-Zanuy and

yesyesno no no no
Pascual-Gaspar [9]
Pascual-Gaspar et al. [26]
Cpatka and Zalasinski [7]

Zalasinski and Cpatka [38]

yesyesno no no no
yes no yes yes yes no

yes no yes yes yes no

our method yes no yes yes yes yes

The method presented in this work is also char-
acterized by other features. They can be summa-
rized as follows:

— It creates signature partitions with the follow-
ing interpretation: high and low velocity at the
initial, middle and final moments of the sign-
ing process, high and low pen pressure at the
initial, middle and final moments of the signing
process [6, 8, 40, 42].

— It determines the value of the weight of impor-
tance for each created partition [29, 31]. Parti-
tions’ weights are used in the verification phase
of test signatures.

— It uses the fuzzy sets and systems theory in as-
sessment of imprecise similarity of test signa-
tures to reference signatures [5, 30, 37].

— Itis based on four types of signals: shape signals
(x and y), pen pressure signal on the surface of a
graphic tablet z, and pen velocity signal v.

This paper is organized into 4 Sections. Sec-
tion 2 contains a description of the components of
the presented algorithm. In Section 3 a detailed de-
scription of the algorithm is shown. The simulation
results are presented in Section 4 while the conclu-
sions are drawn in Section 5.

2 General description of the com-
ponents of the presented algo-
rithm

The presented algorithm for the evolutionary
generation of hybrid descriptors of the on-line sig-
nature uses the flexible Mamdani-type fuzzy sys-
tem (Section 2.1) and the differential evolution al-
gorithm (Section 2.2).

2.1 Fuzzy system

The information on the implementation of in-
dividual components of the Mamdani-type flexi-
ble fuzzy system (FS) [28] is presented in Sec-
tions 2.1.1-2.1.3.

2.1.1 Notation of fuzzy sets

In this paper, we use Gaussian fuzzy sets. We
have adopted a notation that allows maintaining the
value of the Gaussian membership function above
or below a certain limit value of linguistic variable
XA at a constant level 1

;uA (-xvaaavpLapR) =
sgn (—x+xA) — (1—pL),

exP(‘(ch )z) G

sgn (+x—xA) — (1 - pR)

&|

max

where {ﬁ,a} are the center and width of the
Gaussian function, sgn(-) is the signum function,
and {pL,pR} are the saturation parameters of the
function (see Figure 1).
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2.1.2 Notation of fuzzy rules

The FS presented herein uses nRules fuzzy
rules {rule,,rule,,...rule }. Each rule,, has
the following form

nRules

[ IFxp:l,rzl ISAi,pzl,r:Lm |
WITH w, ,_,,_ AND ...
'xp:Lr:R IS ALp:],r:R,m
WITH w, ,_,, o AND ...
ruley | X, p, 1 ISA; ,_p, 1, , (2

WITH w, , . AND ...

xp:P,r:R IS Ai,p:P,r:R,m

WITH w, , 5. p AND

THEN yIS B,

where x), , are input linguistic variables, y is the out-
put linguistic variable, A; ., are the input fuzzy
sets of rule m of user i, B,, is the output fuzzy set of
rule m of user i, w; ,  are the weights of input fuzzy
sets of user i (w; , » € (0, 1)) (shared by the rules). In
the standard notation of the rule base, components
w; .- are not used. Their use introduces a hierarchy
of importance - we dealt with these issues in our
previous works [3].

2.1.3 Notation of the fuzzy system

When singleton-type fuzzification and centre of
area defuzzification are used [28], output signal y
of the FS based on one output and rules (2) has the
following form

y= -
xB,,xB

nRules___ nRules o ms

rgl XBF. mil T Tm’ ‘uBm GB7 me7
PRy,

xB,,xB ’
nRulesnRules _n m
r=1 m=1 T Tm7 ‘uBm GB’me,
PRy,

3)

where T, is the activation level of rule rule,, deter-
mined as follows

jp,ﬁ
’;ig u xﬁp,r,ma
Tp= T* Aip.rm GA; ) r» ’
- pL,. PR,
WL,p,r

“

pL=1; pR=0 pL=0; pR=1
!

u

|
pL=0; pR=0

Figure 1. Interpretation of parameters { pL, pR} of
Gaussian membership function (1) adopted in this

paper.

In formulas (3) and (4) the following notation
has been used: {Xj,%,,...%,} are the input signals
of the system, {u, (-),up (-)} are the member-

p,m m

ship functions of the fuzzy sets of form (1), T (-)
is a t-norm [28] being the inference operator, 7* (-)
is a t-norm with weights of arguments [28] being
aggregation operators of the predecessors of rules
(2), S(+) is a t-conorm being the aggregation oper-
ator of the fuzzy conclusions from rules (2). Oper-
ator 7 (-) with the weights of arguments was pre-
sented in [29] in order to include the importance of
predecessors in the rule base. The relationship be-
tween the triangular norms and their variants with
the weights of arguments is as follows

N

7 (w) = T (@i, 1-m))

(T (ai,wi)),

(5)
St (aw) =

1=

._.D):

where a; € (0,1) (i=1,2,...n) are the arguments of
operators of form (5), and w; € (0, 1) are the weights
of these arguments. It is easy to see that if in depen-
dencies (5) we use e.g. algebraic triangular norms,
then they take the following detailed form

T* {a;w} = i£"11(1+(a,-— 1) -w;)

S {a;w}=1- ﬁ (I —a;-w;).

i=1

(6)

More details about the operators of form (5) and
their applications in the FSs can be found in our pre-
vious works [3, 29, 30].

2.2 Differential evolution algorithm

In the considered algorithm, the differential
evolution (DE, [14]) algorithm was used as an ex-
ample of the method based on a population. This
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is a well-known metaheuristic optimization method
which in the following steps of the evolution pro-
cess improves solutions encoded in individuals of
the population (so-called agents). Due to the sim-
plicity of implementation and high efficiency, the
DE has undergone many modifications [32] and can
be used in many interesting applications [18, 23, 35,
45].

The way in which the DE works is in accor-
dance with Algorithm 2. It implements basic muta-
tion scheme DE/rand/1 and basic crossover scheme
DE/x/y/bin (see Algorithm 2). Scheme DE/rand/1
consists in drawing three individuals from the pop-
ulation and adding to the first of them (the base
vector) a scaled difference between the other two.
Parameter F' € (0,2) is a scaling factor. Scheme
DE/x/y/bin indicates a cross-breeding and consists
in random determination for each component of the
modified individual whether it is to come from that
individual or from its variant changed by mutation
(marked with the index ’). Parameter C, € (0,1)
is the crossover probability. If C, = 1, then the mu-
tated individual replaces the one which has been the
subject of the crossover.

3 Detailed description of the algo-
rithm

The on-line signature partitioning algorithm
presented in this paper uses the notation described
in Section 3.1. It works in two modes, i.e. the
learning mode (Section 3.2) and the test mode (Sec-
tion 3.3).

3.1 Adopted notation

The algorithm presented in this paper has been
divided into eight parts: Algorithm 1 - Algorithm 8.
It uses the following variables:

— Xj j=jBase [Xi, j=jBase,ly---,Xi j= jBase,K,-] and
Yi.j=jBase = i, j=jBase,1s -+, i j= jBase,K,-] - nor-
malized trajectories describing the shape of the
base reference signature of user i.

Vi j—jBase = |Vi.j—jBase,ls---:Vi,j—jBasek;] and
Z; j—jBase = [Zi, j=JjBase,1y- -+ %i,j= jBase,Ki] - nor-
malized trajectories describing the dynamics of
the base reference signature of user i (pen veloc-
ity v and pen pressure z).

X0 = O a2 ),

il tJ i,j,17" lj K;
v, X,{Z}, and Y;{Z} - trajectories descrlblng the
shape of the reference signatures of user i nor-
malized on the basis of his/her base signature
JBase (signals X; j—iBase> Yi j—jBases Vi,j=jBases
and z; j— jBase)-

xtst!"h = [ust ] st ] st xtst!
and ytstl{Z} - trajectories describing the shape of

the test signature of the user claiming to be user i
normalized on the basis of base signature jBase
of user i (signals X; j—iBases Yi,j—jBases Vi, j=jBase>
and z; j— jBase)-

pv; = [pvi1,...,pvik,] - evolutionarily selected
indicators of the membership of the shape tra-
jectory points to vertical sections.

ph{s} [ph{ S , phl{sK}l] - evolutionarily se-
lected 1nd1cators of the membership of the shape
trajectory points to horizontal sections.

kv; = [kvi1,...,kv; p] - the number of points in
vertical sections.

Kef'! = kel kel}l) el =
[k {;},r_ 15 ;{ p}, z]) - the number of points in
the partltlons created from the intersection of P

vertical sections and R horizontal sections.

TC = (el Tely k] (rely =

i,k=K;
it where e =
[tc ff{‘;} _11" tcﬁ;}_r:R]) - templates of the ref-

erence 51gnatures’ shapes determined for the
shape trajectories and normalized on the basis
of the signals describing the dynamics of the
reference base signature of user i.

W{S7a} — [ {s,a} .. {Sva}] ( {Sva} —
[w {;,a,}_l, w;{;ar R]) welghts of the partltlons

for P vertical sections and R horizontal sections.

djpr dmax, avgd, and sd,, - temporary vari-
ables: the descriptors of reference signature j
in the partitions, the boundaries of the conclu-
sion of the reference signatures in the partitions,
average values of the boundaries of conclusion
of the reference signatures in the partitions, and
values of the standard deviation of the reference
signatures descriptors in the partitions.
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— Dtstbeh = {dtst!™) ... dest )} atst) =

{dtst;fri}l yein ,dtst[{,fri}R}) - descriptors of the
test signature in the partitions (the distance be-
tween the test signature and the signatures’ tem-
plates).

—{s,a} {s,a} —{s,a}

Azpr _[Alprm I Alprm nRules] - pa-
rameters describing the centres of the Gaussian
input fuzzy sets of the system for assessing the
similarity of the signatures of a user claiming to

be user i to user i signatures’ templates.

- A,{ » r} parameters describing the widths of the
Gaussian input fuzzy sets of the system for as-
sessing the similarity of the signatures of a user
claiming to be user i to user i signatures’ tem-

plates.

- xB = [ﬁmzl TERE 7Er11:nRules] - parameters de-
scribing the centres of the Gaussian output fuzzy
sets.

— OB - parameter describing the width of the Gaus-
sian output fuzzy sets.

-pL = [pL,,....pL g, and PpR =
[PR,, ..., PR pues) - Parameters forcing the in-
finity of the Gaussian function (left-sided and
right-sided) (see Figure 1).

Algorithm 1 Learning phase for user i
1: acquire J > 1 reference signatures represented
by the shape and dynamics signals
2: get the parameter describing the tolerance of the
verification process 8; > 0
3: determine the base signature (determine jBase €
[1,J]) represented by reference signals V; j— jpase
and z; j— jpase
4: normalize the shape and length of J reference
signatures of user i on the basis of his/her base
signature jBase (signals X;i—ipase, Yi,j=jBases
v

Vi j=jBase and Z; j— ipase) - determine X,-{V},
X7 and Y,{Z}

5: perform the vertical and horizontal evolutionary
partitioning of base signature jBase for P verti-
cal sections and R = 2 horizontal sections (Al-
gorithm 2)

6: store in the database the parameters needed to
verify the test signatures of user i (e.g. from in-
dividual XBest) (Algorithm 7)

Table 2. List of the formulas used in Algorithm 4.

Item

Ho. Equation
PVik ‘=
1 for 0 < k <int(divpv,)
1. 2 for int (divpv,) < k <int(divpv,)

P for int (divpvP 1) <k<K;
ph

( 1 fork e Olnt dlvph{s})

(
int dlvph{ }>
2. 2fork e 1nt dzvph{g}) >
(
»

Rforke 1nt(dzvph > l>

R({ﬁ+wﬁ+>

{en} | {2}
p= lr 1 +W +W
3. avgw =1— i";,; BT
P
4, avgky = % - Y kvip
p=1

5. sdkv = \/Pll - Y (avgkv— kv,;,,)2
i X ( z{‘;}r+kcz{p}r>
2.PR
(avgkc—kc{ v ) +

i,p,r

~
= ﬂ[\’h

)?
+ | avgkc — kc; o
7. |sdkc= PR

avgw, i, (sdkv)

| meaveko):

wavgw, wsdkv,
wavgkc

Algorithm 2 Differential evolution algorithm for de-
termining partitions in the reference signatures of
user i
1: randomly initialize
[Xchzl ) Xch:27 s
X, of form (7)
2: for step := 1 to nSteps do
3: for ch:=1 to nind do

population
) Xch:nPo p} of

Pop =
individuals

. {1,2,...,nInd}\
4: draw chl € {ch}

. {1,2,...,nInd}\
5: draw ch2 € { {ch,chl}
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10:
11:
12:

13:

14:

15:
16:

17:
18:

19:
20:

‘ {1,2,...,nInd}\
draw ch3 € { {ch,chl,ch2}

draw gRand € {1,2,... ,nDim}
for g = 1 to nDim do
ch,g =
Xchl,g +F- ( Xchz,g _XchB‘g )
forrand (0,1) <C,
Xen, p otherwise
end for g
repair population Pop
determine ffX :=ff(X_,) > Alg. 4

determine ffX = ff (X'Ch) > Alg. 4

if <ffX > ffX’) then
X =frx X, =X,
end if )
i ffXBest > ffX then
or (step-ch=1)
ffXBest :== ffX ; XBest :=X_,
end if
end for ch

21: end for step

Algorithm 3 Algorithm of random initialization of
population Pop = [X,—1,Xcn—2, . . ., Xch=npop] Of in-
dividuals X, of form (7) of user i

1: for ch:=1 to nPop do

A

10:
11:

forpzzltoP—ldo

divpv,, :
( K,‘*l) _ Ki—1
rand< (1—|—p Kﬂl)_’_lgf’]v )
P 3P
end for p

for each s in {v,z} do
forr:=1toR—1do

minis} = min (s,-,j.k)
(k=12,..K)A ~ "
(pviﬁk:’)
maxi o . max (Si,j.k)
(k=120 KA ’
(Pvi.k:r )
divphis} =
minis} 47 mdxg }7mll’1£ 7} +
__max { } minis}
)
rand Ry

min{s} 4y Xy I;mm, +
_ maxis} — minis}
3-R
end for p

end for s

Xch =
divpv dtvpvp P_1>
12: dlvph{p . dlvphr R }1, =
dzvphj;f},...,a’tvphf;lﬁl
{Xch,l7"'7Xch,nDim} )
13: end for ch

Algorithm 4 Determination of the evaluation func-
tion value of the DE algorithm for individual X,
1: divpv := X, {divpv} > load from X,
: for k:=1to K; do
compute pv; i > Tab. 2, eq. 1

2

3

4 kvip=pyyt =1

5. end for k

6: for each s in {v,z} do

7 divph{s} =X {divph{s} } > load from Xy,

8 for k:=1to K; do

9 compute phi{i} > Tab. 2, eq. 2
,p Pvikr=ph)

11: end for k

12: end for s

13: determine shape templates for J reference signa-
tures (Algorithm 5)

14: determine parameters of the system for evalua-
tion of similarity of the signatures of the user
claiming to be user i to the templates of user i
signatures (Algorithm 6)

15: compute avgw > Tab. 2, eq. 3

16: compute avgkv and sdkv > Tab. 2, eq. 4 and 5

17: compute avgkc and sdkc > Tab. 2, eq. 6 and 7

18: compute ff (Xcp) > Tab. 2, eq. 8

Algorithm 5 Determination of the templates of the
shapes of the reference signatures
1: for each s in {v,z} do

2: for each a in {x,y} do
3: for k:=1to K; do

, solsa) 1S s
4 Cdpprigr—phl) T 'jglai,j,k
5: end for k
6: end for a
7: end for s
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Algorithm 6 Determination of the system parame-
ters for evaluation of the similarity of the signatures
of the user claiming to be user i to the templates of
user i signatures

1: for each sin {v,z} do

2: for each a in {x,y} do

3: D:=0

4: for k:=1to K; do

5 for j:=1toJ do

d. wt=
JP=DPVikr=phi;
o W, dsa) ’
Gijk ™ tchkﬁppvi.karph,-{i})

7 end for j

8: end for k

9: for p:=1to Pdo

10: for r:=1to R do

11: for j:=1toJ do

12: dipr=1/dj,,

13: end for j

14: compute dmax > Tab. 3, eq. 1
15: compute avgd > Tab. 3, eq. 2
16: compute sd,, > Tab. 3, eq. 3
17: compute wf;ar} > Tab. 3, eq. 4
18: for m := 1 to nRules do

19: compute ﬁl{;a,}m > Tab. 3,

eq. 5

20: end for m
21: compute 6A; ;) >Tab. 3, eq. 6
22: end for r
23: end for p
24: end for a
25: end for s
26: for m :=1 to nRules do
27: compute pL,, > Tab. 3, eq. 7
28: compute pR,, > Tab. 3, eq. 8
29: compute xB,, > Tab. 3, eq. 9
30: end for m
31: compute 6B > Tab. 3, eq. 10

Algorithm 7 Saving in the database the parameters
needed to verify the test signatures of user i

1:

R AN Rl

—_ —
—_ O

12:
13:
14:

store in the db: X; j—;Base, Yi,j=jBase> Vi,j=jBase
and z; j— jp4se (reference signals of base signature
jBase)
store in the db: pv;, kv;
store in the db: xB, 6B, pL, and pR
for each s in {v,z} do
store in the db: ph,{‘y} , Kc;{‘v}
for each ¢ in {x,y} do
store in the db: TC,-{S"”}, Wi{w}
for p:=1to Pdo
for r:=1to R do

store in the db: ﬂi{;i}, a;{;flr}
end for r / -
end for p
end for a

end for s

Algorithm 8 Verification phase of the signature of
the user claiming to be user i

1:
2:

get a test signature and index of user i

load from the database the parameters needed
for verification of the test signatures of user i
normalize the shape and length of the test sig-
nature on the basis of base signature jBase of
USEr i - US€ @; j—jBase> Si,j—jBase> and determine
atsti{s}

verify the signature of the user claiming to be
user i represented by atstjs} (Algorithm 9)

Algorithm 9 Verification of the signature repre-

sented by trajectories xts

tl{v}, ytsti{v}, xtstl{Z} and

ytst'?

1:
2:
3:
4:

Y %© 2D

10:
11:
12:
13:

for each s in {v,z} do
for each a in {x,y} do
Dtsts4 .= 0
fork:=11to K; do
dst > wt+ =
P=DPVikr=ph;;

2
{s} {s.a}
(atsth Y — tci’k’p:pw‘kfr:ph {k})
end for k
for p:=1toPdo
for r:=1to R do
drst$5 o= \JdestiS
end for r
end for p
end for a
end for s
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14: determine signal y of system (3) for {Dtst{v’x},
Dtst!"}, Dtst{*}, Dtstie}h)

15: if § > cth then

16: the test signature was created by user i

17: else

18: the test signature was not created by user i

19: end if

Table 3. List of the formulas used in Algorithm 6.

Item .
Equation
no.
1. dmax :=9;- max {d~ }
j:1~,27~~~7-, Jipsr
J
.Zldj-w
=
2 avgd := —

1 J 2
3| sdpri= i 1 (avga—d,,,,)
{s,a} . sd, -avgd
4 Wipr *= 1= L max (sdp2,2-avgd)

p2:=12...P,
r2:=12,...,.R
—{sa}l . (m—1)-dmax
5 XAi1P7V7m nRules—1

—{sa} | ALY Al

6 OA; = bpol
Lp,r 2. /lOg(%)
lform=1
7. PLy = { 0 otherwise
1 for m = nRules
R = .
8 Plm { 0 otherwise
B . —1
9. xB,, = LR’;’M:I
10. OB = BaxBi
2- log(&)

3.2 Learning phase

At the beginning of the learning phase user i
creates J reference signatures (Algorithm 1, line 1)
and the parameter describing the tolerance of the
verification process is acquired (Algorithm 1, line
2). The use of parameter §; allows us, among oth-
ers, to adjust the algorithm to specific fields of ap-
plication and take into account the trend of changes
occurring over time in the way in which the user
signs.

Next, the base signature with index jBase is se-
lected from all reference signatures (Algorithm 1,
line 3). Itis one of the reference signatures acquired
in the acquisition phase. The distance between the
trajectories describing this signature and the tra-
jectories of other reference signatures is the low-

est taking into account the adopted distance mea-
sure (e.g. the Euclidean one). The other reference
signatures in the learning phase (Algorithm 1, line
4) and the test signatures in the test phase (Algo-
rithm 8, line 3) are matched to it in the standard
signature normalization procedure [17, 19, 22, 25].
It uses, among others, the Dynamic Time Warping
algorithm [1, 11, 33].

Following the normalization, the evolutionary
partitioning of base signature jBase is performed.
This process is executed for the defined and equal
for all users number of vertical sections P € [1,3]
and the number of horizontal sections R € [1,2] (Al-
gorithm 1, line 5 and Algorithm 2). The upper val-
ues of P and R have been limited because increasing
these values causes an excessive decomposition of
the signatures and reduces the ability to interpret the
created partitions.

After the partitioning, the parameters of user i
needed in the verification phase are stored in the
database (Algorithm 7). Interpretation of these pa-
rameters is presented in Section 3.1.

3.2.1 Initialization of the population

The procedure of evolutionary partitioning
starts with a proper initialization of a population
(Algorithm 3). It was assumed that each individ-
ual in population X, (ch =1,2,...Npop, Npop is
the number of individuals in the population) has the
following structure:

divpv :1,...,divpvp:P_1,
fi=n}

X, = divph,” ", ... ,divphii?ﬁl, =
divphfi:f}, e >diVPh£ijezil @

{Xch,l vy Xch,nDim } ’

where nDim = 2-(P—1)-(R—1) is the length
of individual X ,, divpv, (p = 1,2,...P — 1) are
the boundaries of vertical sections, divphis} (r=
1,2,...R — 1) are the boundaries of horizontal sec-
tions. Generation of components X , and divphis}
has to be performed in accordance with the follow-
ing conditions
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divpv[J < divpverl

forp=1,2,...,P—2
divphis} < divphfi}l
forr=1,2,...,R—2.

®)

Taking into account conditions (8), initial-
ization of Pop performs drawing of divpv, and

divphis} in the subsequent sections (Algorithm 3,

lines 3 and 7-9).

3.2.2 Evolution of the population

Evolution of the population is performed af-
ter the initialization procedure according to the DE
method. It runs in a typical way, i.e. the crossover
(Algorithm 2, lines 4-7 and 9) and the mutation
(Algorithm 2, line 9) are performed, the population
is repaired (taking into account conditions (8), Al-
gorithm 2, line 11), individual Xcﬁ (Algorithm 2,
line 12) and its modified version X, (Algorithm 2,
line 13) are evaluated, Pop is updated (Algorithm 2,
lines 14-16), and the best solution found XBest is
updated (Algorithm 2, lines 17-19).

3.2.3 Evaluation of the population

In Algorithm 2 the procedure for determining
the evaluation function (Algorithm 4) is very im-
portant. It starts with loading the division points of
time-domain divpv (Algorithm 4, line 1) and up-
date of the indicators of membership of the shape
trajectory points to the vertical sections (Algo-
rithm 4, lines 3 and 4). Next, an analogous pro-
cess is performed for the horizontal sections (Al-
gorithm 4, lines 6-12). With the information about
the partitions, the templates of the signature shape
(Algorithm 4, line 13) can be determined in the par-
titions. The FS parameters (3) for evaluating the
signatures’ similarity (Algorithm 4, line 14; Sec-
tion 3.2.4) can also be computed.

An important stage of Algorithm 4 is to de-
termine the components of the evaluation function
(Algorithm 4, lines 15-17), which are as follows:

— Component avgw determines the stability of the
reference signatures of user i. It is determined

on the basis of the weights of the partitions. The
weights which are more stable have a higher
value. In such partitions, the way in which the
user signs is more stable. Component avgw is
the negated average weight value.

— Component sdkv is used to evaluate unifor-
mity in the allocation of the signature trajectory
points to the vertical sections. It is expressed by
the standard deviation from the arithmetic mean
avgkv.

— Component sdkc is used to evaluate uniformity
in the allocation of signature trajectory points to
vertical sections. It is expressed by the standard
deviation from the arithmetic mean avgkc.

The last step in Algorithm 4 consists in deter-
mining the value of fitness function ff (X.) for in-
dividual X,,. For this reason, we use operator (6) in
which weights {wavgw, wsdkv, wavgkc} correspond
to {avgw,sdkv, sdkc} components. The weights are
the algorithm parameters. Standard deviations of
components {avgw,sdkv,sdkc} can be greater than
1, so they are normalized to the range (0, 1) by the
sigmoid membership function

u(x; pary, pary, pars, pary) =

; 9
Pars+ T paryw—para))

where the parameters have the following values in
the simulations: par; = 10, par, =5, par; =1, and
pary = 0. The purpose of the DE is to minimize the
value of the evaluation function.

3.2.4 Determination of the FS parameters for
assessing the similarity of the signatures

The purpose of the FS is a fuzzy assessment
of the differences between the reference signatures’
templates and the signatures (represented by the
trajectories) which are the subject of the verifica-
tion process. The FS performs verification indepen-
dently at the level of each partition (Algorithm 9,
line 5), so formula (2) takes the following form
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10)

THEN yIS B,

Weights of partitions wi{‘;’i}l.r:l are determined

in Algorithm 6 in lines 3-17. In the following part
of Algorithm 6 parameters of input and output fuzzy
sets of form (1) of user i (Algorithm 6, lines 18-31)
are computed. As for replacing the notation of the
rules of form (2) by formula (10), formula (4) has
the following form

T =
{s=v,a=x}
Ap,r )
—{s=v,a=x}
XAi-,[Jyr,m ’
luA.{x:u,a:X} - s:v,a:x}
L GAi!prr ?
p=R PLy; PRy,
T* X[{;jrzlaa:y} ,
= A s=wa=y}
‘Ll { } X isprrvm ’ N
.s:z,a:y —{s=z,a=y K
At,p‘r.m GA;.{’pJ_ )}’
ooy TP
S=V,a=Xx §=z,a=y
Lp,r = Wipr

1D

3.3 Test phase

At the beginning of the test phase, one test sig-
nature of the user and the information about his/her
alleged identity are acquired (Algorithm 8, line 1).
This user will be further marked with index i. Next,
the parameters of the reference signatures of user
i are loaded from the database (Algorithm 8, line
2). The reading from the database is analogous to
Algorithm 7 implemented for writing.

Later in the verification phase, the shape and
length of the test signature is normalized on the ba-
sis of the base signature of user i (Algorithm 8, line

3). It is performed as in the training phase. After
this step, the test signature is represented by a set of
normalized trajectories: xtst;.{v}, ytst;-{v}, xtst;-{Z}, and

ytst'.

After the normalization, the key step in the ver-
ification process is performed. It is defined as Al-
gorithm 9. In the first phase of the algorithm, nor-
malized distances between the test signature trajec-
tories and the templates of the reference signatures
of user i are determined (Algorithm 9, lines 1-13).
Matrices of distances Dtst*¢} are the input signals
of the system used for assessing the similarity of
signatures (3). They are used to determine the re-
sponse of the system (Algorithm 9, line 14). The
value of the response is used for the signature veri-
fication in the test phase (Algorithm 9, lines 15-19).
In the verification coefficient cth € (0,1) is used.
Its value is common to all biometric system users
and usually close to 0.5 (this is the value which we
adopted in the simulations). Using this factor al-
lows us to eliminate disproportions between FAR
and FRR errors (see e.g. [36]) and adapt the sys-
tem to the expectations arising from the area of its
application.

4 Simulation results

We implemented and tested the presented al-
gorithm for the evolutionary generation of the on-
line signature hybrid descriptors in C#NET lan-
guage. The simulations were performed for P €
{2,3,4} vertical sections. We assumed that the
identity verification carried out with the use of hy-
brid partitions created by a population-based algo-
rithm should work better than in the case of our pre-
vious method [7], which creates fixed-size hybrid
partitions.

The simulations were performed using the
BioSecure dynamic signature database DS2 [13],
which contains signatures of 210 users acquired
in two sessions with the use of a graphics tablet.
Each session contains 15 genuine signatures and 10
skilled forgeries per person. In the learning phase,
we used 5 randomly selected genuine signatures
of each signer. During the test phase we used 10
genuine signatures and 10 so-called skilled forg-
eries [20] of each signer.
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Table 4. Accuracy of the method using an
algorithm for the evolutionary generation of the
on-line signature hybrid descriptors.

Number of

vertical Average  Average  Average
. FAR FRR error
sections P
2 2.72 % 2.62 % 2.67 %
3 3.36 % 3.30 % 333 %
4 2.72 % 2.62 % 2.67 %

Table 5. Comparison of the accuracy of the
method using an algorithm for the evolutionary
generation of the on-line signature hybrid
descriptors to other methods used for the dynamic
signature verification using BioSecure database.

Method  Average Average Average

FAR FRR error
Methods of other 3.48 %-
authors [15] 30.13 %
Method using
fixed hybrid 336% 330% 333%
partitions [7]
m‘;‘l‘l‘; 4 272% 2.62% 2.67 %

We adopted the following values of the Differ-
ential Evolution algorithm parameters in the sim-
ulations: (a) the number of chromosomes in the
population Npop = 100, (b) the value of parame-
ter F [27] of the DE algorithm is 0.5, (c) the value
of parameter CR [27] of the DE algorithm is 0.9,
(d) the value of weight wavgw is 0.7, (e) the value of
weight wsdkv is 0.2, (f) the value of weight wavgkc
is 0.2, and (g) nSteps is 100.

The simulations were repeated 5 times in ac-
cordance with the standard cross-validation proce-
dure. The results of the simulations are presented
in Table 4 in the form of FAR (False Acceptance
Rate), FRR (False Rejection Rate) and EER (Equal
Error Rate) coefficients which are used in the litera-
ture to evaluate the effectiveness of biometric meth-
ods [20]. Moreover, Table 5 contains the results ob-
tained by our method in comparison to the methods
of other authors.

One can see that the method for the on-line sig-
nature verification based on the evolutionary gen-

eration of signature hybrid descriptors achieved the
highest accuracy when two vertical sections asso-
ciated with the time moments of signing are used.
Moreover, increasing the number of vertical sec-
tions causes a deterioration of verification results.

The results of the method presented in this pa-
per are also better than the results of the method for
the on-line signature verification using hybrid par-
titioning with a fixed size of created partitions pre-
sented in [7]. It means that the assumptions adopted
in this paper are correct and the evolutionary gen-
eration of partitions increases the efficiency of the
system used for the signature verification. More-
over, the accuracy of our method is good in compar-
ison to the results achieved by other methods pre-
sented in [15].

5 Conclusions

In this paper, we have presented a new
evolutionary-fuzzy algorithm for the generation of
the on-line signature hybrid descriptors. It uses
a Differential Evolution algorithm for creating hy-
brid partitions of the on-line signature, which are
the most characteristic in the context of the individ-
ual. It is realized by selecting boundary points of
the partitions which are used to divide signals de-
scribing the dynamics of the signature into some
(certain) regions. The simulations performed us-
ing the BioSecure dynamic signature database con-
firmed that the partitions of the signature created by
our method are more characteristic of the individual
because the effectiveness of the identity verification
process executed on the basis of the descriptors cre-
ated in the partitions selected by our method is rel-
atively high.
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