PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strong limit theorems for general renewal processes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An approach is discussed to derive strong limit theorems for general renewal processes from the corresponding asymptotics of the underlying renewal sequence. Neither independence nor stationarity of increments is required. In certain situations, just the dualities between the renewal processes and their defining sequencesin combination with some regularity conditions on the normalizing constants are sufficient for the proofs. There are other cases, however, in which the duality argumentsdo not apply, and where other techniques have to be developed. Finally, there are also examples, in which an inversion of the limit theorems under consideration cannot work at all.
Słowa kluczowe
Rocznik
Strony
329--349
Opis fizyczny
Biblogr. 15 poz.
Twórcy
autor
  • National Technical University of Ukraine, Department of Mathematical Analysis and Probability Theory pr, Peremogy 37, Kyiv 02056, Ukraine
autor
  • Institute of Mathematics, Maria Curie-Sklodowska University pl. Marii Curie-Skłodowskiej 1, .20-031 Lublin, Poland
  • Philipps-Universität Marburg, Fachbereich Mathematik und Informatik Hans-Meerwein-Strasse, D-35032 Marburg, Germany
Bibliografia
  • [1] I. Fazekas and O. Klesov, A general approach to the strong laws of large numbers, Probab. Theory Appl. 45 (2000), pp. 568-583.
  • [2] W. Feller, A limit theorem with infinite moments, Amer. J. Math. 68 (1946), pp. 257-262.
  • [3] A. Frolov, A, Martikainen and X Steinebach, Limit theorems for maxima of sums and renewal processes, Bericht Nr 70 (201)0), 12 pp., Fachbereich Mathematik und Informatik, Philipps-Universität Marburg.
  • [4] J. Galambos, Asymptotic Theory of Extreme Order Statistics, Wiley, New York 1978.
  • [5] A. Gut, Slopped Random Walks, Springer, New York 1988.
  • [6] A, Gut, O. Klesov and J. Steinefaach, Equivalences in strong limit theorems for renewal counting processes, Statist. Probab. Lett. 35 (1997), pp. 381-394.
  • [7] L. Horváth, Strong approximation of extended renewal processes, Ann. Probab, 12 (1984), pp. 1149-1166.
  • [8] S. Janson, Renewal theory form-dependent variables, Ann, Probab. 11 (1983). pp. 558-568.
  • [91 O. Klesov and J, Steinebach, Asymptotic behavior of renewal processes defined by random walks with multidimensional time. Theory Probab. Math. Statist. 56 (1998), pp. 107-113.
  • [10] A. I. Martikainen and V. V. Petrov, On a Feller theorem (in Russian), Probab, Theory Appl. 25 (1980), pp. 194-197.
  • [11] T. Mori, The strong law of large numbers when extreme terms are excluded from sums, Z. Wahrsch. verw. Gebiete 36 (1976), pp. 189-194.
  • [12] F. Mourier, Eléments aléatoires dans un espace de Banach, Ann. Inst. H. Poincaré 13 (1952-1953), pp. 159-244.
  • [13] Q.-M, Shao, Maximal inequalities for partial sums of q-mixing sequences, Ann, Probab. 23 (1995), pp. 948-965.
  • [14] D. Siegmund Sequential Analysis, Tests and Confidence Intervals, Springer, New York 1985.
  • [15] M. Woodroofe Nonlinear Renewal Theory in Sequential Analysis, CBS-NSF Regional Conf. Scr. Appl. Math., Vol 39, SIAM, Philadelphia 1981.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6df5f898-ad45-4dfe-b07e-ff314218f1f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.