PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fotoreaktywność związków heterocyklicznych w warukach zmieniającego się otoczenia chemicznego w świetle chemii obliczeniowej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Photoreactivity of heterocyclic compounds under changing chemical environmental compounds under changing chemical environment conditions in the light of computational chemistry
Języki publikacji
PL
Abstrakty
EN
The natural environment and living organisms that surround us are made up of chemical compounds, called chromophores, which can absorb photons coming from UV light from the Sun. The one-photon absorption process leads to ultrafast alteration in the electron density of chromophores, resulting in the population of short-lived excited states. These UV-induced electronic states can be responsible for performing high-energy chemical reactions, which cannot be observed in the chemistry of the ground state. Consequently, photochemical processes could damage the initial structure of a chromophore or allow molecules to undergo the chemical transformation to photoproducts. Therefore, understanding the photochemical and photophysical properties of essential chemical molecules for biology, medicine, renewable energy, and other fieldsis crucial to improve and find applications of light-sensitive systems in daily life. To scrutinize UV-induced chemistry, time-resolved spectroscopy is widely used as an experimental tool to investigate photochemical events. However, the experimental approach cannot provide detailed information about the molecular mechanisms of photochemical processesthat occur in the excited states. Therefore, experimental methods in conjunction with computational photochemistry are used to elucidate the behaviour of UV-excited chemical molecules. Only the synergistic approach can comprehensively describe the photochemical picture of UV-induced molecules. This concise review contains a short introduction to the applications of computational chemistry in the studies of the photochemical properties of chromophores, and major radiationless deactivation pathways occurring in heteroaromatic compounds are briefly discussed. Furthermore, two very recent achievements of joint experimental and theoretical photochemistry studies are outlined, demonstrating how solvent or solute molecules can actively participate in photorelaxation channels of chromophores, allowing for an excited-state intermolecular electron transfer mechanism. The selected and discussed research results show that computational chemistry plays an invaluable role in answering questions about molecular mechanisms in the excited states and enables prediction of unexpected chemical processes.
Rocznik
Strony
995--1024
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Politechnika Wrocławska, Wydział Chemiczny, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław
  • Politechnika Wrocławska, Wydział Chemiczny, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław
  • Politechnika Wrocławska, Wydział Chemiczny, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • [1] P. Klán, J. Wirz, Photochemistry of Organic Compounds from Concepts to Practice, A John Wiley & Sons, Ltd, Chichester, 2009.
  • [2] P. Atkins and J. de Paula, Atkins’ Physical Chemistry, W. H. Freeman and Company, New York, 2006.
  • [3] D. L. Andrews. “Electromagnetic Radiation”, Encyclopedia of Spectroscopy and Spectrometry. Elsevier, 2017.
  • [4] J. W. Farley, W. C. Brumley, and D. Eastwood. “Electronic Spectroscopy, Environmental Applications”, Encyclopedia of Spectroscopy and Spectrometry. Elsevier, 2017.
  • [5] J. Cadet, S. Mouret, J.-L. Ravanat, T. Douki, Photochem. Photobiol., 2012, 88, 1048.
  • [6] G. Gunaydin, M. E. Gedik, S. Ayan, Front. Chem., 2021, 9, 1.
  • [7] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76.
  • [8] A. B. Beeler, Chem. Rev. 2016, 116, 17, 962.[1] P. Klán, J. Wirz, Photochemistry of Organic Compounds from Concepts to Practice, A John Wiley & Sons, Ltd, Chichester, 2009.
  • [9] R. Szabla., “CHAPTER 5. Rethinking UV-induced Prebiotic Selection of Biomolecules”, Prebiotic Photochemistry: From Urey–Miller-like Experiments to Recent Findings, The Royal Society of Chemistry, 2021.
  • [10] Y.-J. Liu, D. Roca-Sanjuán, R. Lindh, “Computational Photochemistry and Photophysics: the state of the art”, Photochemistry, The Royal Society of Chemistry, 2012.
  • [11] L. González, D. Escudero, L. Serrano-Andrés, ChemPhysChem, 2012, 13, 28.
  • [12] W. Domcke, D. Yarkony, H. Koppel, Conical Intersections: Electronic Structure, Dynamics & Spectroscopy, World Scientific Pub Co., Singapore, 2004.
  • [13] M. E. Casida, M. Huix-Rotllant, Annu. Rev. Phys. Chem., 2012, 63, 287.
  • [14] S. Lee, S. Shostak, M. Filatov, C. H. Choi, J. Phys. Chem. A. 2019, 123, 6455.
  • [15] R. J. Bartlett and M. Musiał, Rev. Mod. Phys., 2007, 79, 291–352.
  • [16] M K. Shukla, J. Leszczynski, “Radiation Induced Molecular Phenomena in Nucleic Acids A Comprehensive Theoretical and Experimental Analysis“, Springer Dordrecht, 2008.
  • [17] D. Tuna, D. Lefrancois, Ł. Wolanśki, S. Gozem, I. Schapiro, T. Andruniów, A. Dreuw, M. Olivucci, J. Chem. Theory Comput., 2015, 11, 5758-5761.
  • [18] A. Dreuw, M. Wormit, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2014, 5, 82.
  • [19] D. Cremer, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1, 509.
  • [20] T. Shiozaki, W. Győrffy, P. Celani, H.-J. Werner, J. Chem. Phys., 2011, 135, 081106.
  • [21] M. K. MacLeod, T. Shiozaki, J. Chem. Phys., 2015, 142, 051103.
  • [22] P. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, and R. Shepard, Chem. Rev., 2012, 112, 108.
  • [23] S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem., 1974, 8, 61.
  • [24] J. C. Tully, J. Chem. Phys., 1990, 93(2), 1061.
  • [25] T. R. Nelson, A. J. White, J. A. Bjorgaard, A. E. Sifain, Y. Zhang, B. Nebgen, S. Fernandez-Alberti, D. Mozyrsky, A. E. Roitberg, S. Tretiak, Chem. Rev. 2020, 120, 2215.
  • [26] R. J. Buenker, V. Vlasta Bonačić‐Koutecký, L. Pogliani, J. Chem. Phys., 1980, 73, 1836.
  • [27] C. Petrongolo, R. J. Buenker, S. D. Peyerimhoff, J. Chem. Phys., 1982, 76, 3655.
  • [28] M. Persico, V. Vlasta Bonačić‐Koutecký, J. Chem. Phys., 1982, 76, 6018.
  • [29] J. Cadeta, E. Sageb, Thierry Doukia, Mutat. Res., 2005, 571, 3.
  • [30] M. Barbatti, A. J. A. Aquinoa, J. J. Szymczak, D. Nachtigallová, P. Hobzac, H. Lischka, Proc. Natl. Acad. Sci., 2010, 107(50), 21453.
  • [31] S. Mai, M. Richter, P. Marquetand, L. González, Excitation of Nucleobases from a Computational Perspective II: Dynamics. In: Photoinduced Phenomena in Nucleic Acids I. Topics in Current hemistry, 355. Springer, Cham.
  • [32] C. Canuel, M. Mons, F. Piuzzi, B. Tardivel, I. Dimicoli, M. Elhanine, J. Chem. Phys., 2005, 122, 074316
  • [33] M. Merchan, R. Gonzalez-Luque, T. Climent, L. Serrano-Andre, E. Rodrıguez, M. Reguero, D. Peleaz, J. Phys. Chem. B, 2006, 110, 26471.
  • [34] M. Barbatti, J. Am. Chem. Soc., 2014, 136, 10246.
  • [35] J. G. Burr, E. H. Park, A. Chan, J. Am. Chem. Soc., 1972, 94(16), 5866.
  • [36] P. Johann to Berens, J. Molinier, Int. J. Mol. Sci., 2020, 21, 6689.
  • [37] C. E. Crespo-Hernandez, S. Flores, C. Torres, I. N. Encarnacion, R. Arce, Photochem. Photobiol., 2000, 71, 534.
  • [38] C. E. Crespo-Hernandez, R. Arce, Photochem. Photobiol., 2000, 71, 544.
  • [39] C. C.-W. Cheng, C. Ma, C. T.-L. Chan, K. Y.-F. Ho and W.-M. Kwok, Photochem. Photobiol. Sci., 2013, 12, 1351-1365.
  • [40] M. J. Janicki, R. Szabla, J. Šponer, R. W. Góra., Phys. Chem. Chem. Phys., 2022, 24, 8217.
  • [41] R. Szabla, H. Kruse, J. Šponer, R. W. Góra, Phys. Chem. Chem. Phys., 2017,19, 17531.
  • [42] S. Islam, M. W. Powner, Chem, 2017, 2, 470.
  • [43] S. Ranjan, D. D. Sasselov, Astrobiology, 2016, 16, 68.
  • [44] M. W. Powner, B. Gerland, J. D. Sutherland, Nature 2009, 459, 239.
  • [45] J. Xu, M. Tsanakopoulou, C. J. Magnani, R. Szabla, J. E. Šponer, J. Šponer, R. W. Góra, J. D. Sutherland, Nat. Chem., 2017, 9, 303.
  • [46] B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, J. D. Sutherland, Nat. Chem., 2015, 7, 301.
  • [47] J. Xu, N. J. Green, C. Gibard, R. Krishnamurthy, J. D. Sutherland, Nat. Chem. 2019, 11, 457.
  • [48] J. Xu, V. Chmela, N. J. Green, D. A. Russell, M. J. Janicki, R. W. Góra, R. Szabla, A. D. Bond, J. D. Sutherland, Nature, 2020, 582, 60.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6df42ce1-c9e8-4f57-864f-706e64de9dce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.