PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Investigation on the Effect of Graphene Addition on Mechanical Properties of Al8011-T6 Based Fiber Metal Laminate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the tensile and flexural properties of lightweight fiber metal laminates composed of Al8011-T6 and carbon fiber/epoxy resin filled with varying weight percentages of graphene (0.0, 0.3, 0.6, 0.9, and 1.2 wt%) were examined under quasi-static loadings for automobile applications. Fibre-metal laminates having different stacking sequences of the same layer thickness are manufactured using the hand layup process. Surface treatment was performed on Al8011-T6 sheet in order to get good adhesion between aluminium and epoxy. With the optimum content of 0.6 and 0.9 wt% of graphene, the tensile and flexural strengths were improved by 15% and 25%, respectively, compared to aluminium fiber metal laminates without graphene for 0/0 fiber layup orientation.
Twórcy
  • H.K.B.K College of Engineering, Visvesvaraya Technological University, Bangalore 560045, India
Bibliografia
  • [1] L. Che, G. Fang, Z. Wu, Investigation of curing deformation behavior of curved fibre metal laminates. Compos. Structure. 232, 111570 (2020). DOI: https://doi.org/10.1016/j.compstruct.2019.111570
  • [2] C. Ji, B. Wang, J. Hu, Effect of different preparation methods on mechanical behaviors of carbon fibre-reinforced PEEK-Titanium hybrid laminates. Polymer Test, 106462 (2020). DOI: 10.1016/j.polymertesting.2020.106462
  • [3] N.G. Gonzalez-Canche, E.A. Flores-Johnson, J.G. Carrillo, Mechanical characterization of fiber metal laminate based on aramid fiber reinforced polypropylene. Composite Structure 172, 259-266 (2017). DOI: https://doi.org/10.1016/j.compstruct.2017.02.100
  • [4] A.P. Sharma, S.H. Khan, Influence of metal layer distribution on the projectiles impact response of glass fiber reinforced aluminium laminates. Polymer Test 70, 320-347 (2018). DOI: https://doi.org/10.1016/j.polymertesting.2018.07.005
  • [5] X. Li, X. Zhang, H. Zhang, J. Yang, A.B. Nia, G.B. Chai, Mechanical behaviors of Ti/CFRP/Ti laminates with different surface treatments of titanium sheets. Composite Structure 163, 21-31 (2017). DOI: https://doi.org/10.1016/j.compstruct.2016.12.033
  • [6] J.G. Carrillo, W.J. Cantwell, Scaling effects in the tensile behavior of fiber-metal laminates. Composite Science Technology 67, 1684-93 (200). DOI: https://doi.org/10.1016/j.compscitech.2006.06.018
  • [7] L. Ferrante, F. Sarasini, J. Tirillò, L. Lampani, T. Valente, P. Gaudenzi, Low velocity impact response of basalt-aluminium fibre metal laminates. Material Design 98, 98-107 (2016). DOI: https://doi.org/10.1016/j.matdes.2016.03.002
  • [8] M. Abouhamzeh, J. Sinke, R. Benedictus, A large displacement orthotropic viscoelastic model for manufacturing-induced distortions in Fibre Metal Laminates. Composite Structures 209, 1035-1041 (2017). DOI: https://doi.org/10.1016/j.compstruct.2017.06.009
  • [9] Hamed Aghamohammadi, Reza Eslami-Farsani, Abbas Tcharkhtchi, The effect of multi-walled carbon nanotubes on the mechanical behavior of basalt fibers metal laminates: An experimental study. International Journal of Adhesion & Adhesives 98, 102538 (2020). DOI: https://doi.org/10.1016/j.ijadhadh.2019.102538
  • [10] F. Bahari-Sambrana, J. Meuchelboeckb, E. Kazemi-Khasragha, R. Eslami-Farsania, S. Arbab Chiranic, The effect of Surface modified nanoclay on the interfacial and mechanical properties of basalt fiber metal laminates. Thin-Walled Structures 144, 106343 (2019). DOI: https://doi.org/10.1016/j.tws.2019.106343
  • [11] H. Zhang, S.W. Gn, J. An, Y. Xiang, J.L. Yang, Impact behaviour of GLAREs with MWCNT modified epoxy resins. Exp. Mech. 54, 83-93 (2014). DOI: https://doi.org/10.1007/s11340-013-9724-7
  • [12] M.A. Ashraf, M. Peng, Y. Zare, K.Y. Rhee, Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Letters 13, 214-221 (2018). DOI: https://doi.org/10.1186/s11671-018-2624-0
  • [13] M.A. Agwa, I. Taha, M. Megahed, Experimental and analytical investigation of water diffusion process in nano-carbon/alumina/silica filled epoxy nanocomposites. Int. J. Mech. Mater. Design 13, 607-615 (2017). DOI: https://doi.org/10.1007/s10999-016-9335-4
  • [14] S.G. Prolongo, M.R. Gude, A. Urena, Rheological behaviour of nanoreinforced epoxy adhesives of low electrical resistivity for joining carbon fiber/epoxy laminates. J. Adhes. Sci. Technology 24, 1097-112 (2010). DOI: https://doi.org/10.1163/016942409X12584625925060
  • [15] A.M.S. Haque, S2-glass/epoxy polymer nanocomposites: manufacturing, structures, thermal and mechanical properties. J. Compos. Materials 37, 1821-1838 (2003). DOI: https://doi.org/10.1177/002199803035186
  • [16] M. Rodgers Renee, Hassan Mahfuz, K. Rangari Vijaya, Nathaniel Chisholm SJ. Infusion of SiC nanoparticles into SC-15 epoxy: an investigation of thermal and mechanical response. Macromol. Mater. Engineering 290, 423-9 (2005). DOI: https://doi.org/10.1002/mame.200400202
  • [17] C. Lucignano, F. Quadrini, L. Santo, Dynamic mechanical performances of polyester-clay nanocomposite thick films. J. Compos. Material. 42, 2841-2852 (2008). DOI: https://doi.org/10.1177/0021998308096953
  • [18] T.A. El-Melegy, Synergistic effect of different nanoparticles hybridization on mechanical properties of epoxy composite. J. Sci. Eng. Res. 5, 334-340 (2014). DOI: https://doi.org/10.14299/ijser.2014.09
  • [19] I. Isik, U. Yilmazer, G. Bayram, Impact modified epoxy/montmorillonite nanocomposites: synthesis and characterization. Polymer 44, 6371-6377 (2003). DOI: https://doi.org/10.1016/S0032-3861(03)00634-7
  • [20] F. Bahari-Sambran, R. Eslami-Farsani, S. Arbab Chirani, The flexural and impact behavior of the laminated aluminum-epoxy/basalt fibers composites containing nanoclay: an experimental investigation. J. Sandw. Struct. Mater. 144, 106343 (2018). DOI: https://doi.org/10.1177/1099636218792693
  • [21] Kai Jin, Hao Wang, Jie Tao, Xian Zhang, Interface strengthening mechanisms of Ti/CFRP fiber metal laminate after adding MWC-NTs to resin matrix. Composites Part B 171, 254-263 (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.05.005
  • [22] M.A. Megahed, A.M. Abd El-Baky, A.E. Alsaeedy Alshorbagy, An experimental investigation on the effect of incorporation of different nanofillers on the mechanical characterization of fiber metal laminate. Composites 176, 10727 (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.107277
  • [23] Afshin Zamani Zakaria, Karim Shelesh-Nezhad, Introduction of nanoclay-modified fiber metal laminates. Engineering Fracture Mechanics 186, 436-448 (2017). DOI: https://doi.org/10.1016/j.engfracmech.2017.10.023
  • [24] Hanyue Xiao, Mohamed Thariq Hameed Sultan, Farah Syazwani Shahar, Milan Gaff, David Hui, Recent developments in the mechanical properties of hybrid fiber metal laminates in the automotive industry: A review. Reviews on Advanced Materials Science 62, 20220328 (2023). DOI: https://doi.org/10.1515/rams-2022-0328
  • [25] Sadegh Mirzamohammadi, Reza Eslami-Farsani, Hossein Ebrahimnezhad-Khaljiri, The characterization of the flexural and shear performances of laminated aluminum/jute-basalt fibers epoxy composites containing carbon nanotubes: As multi-scale hybrid structures. Thin-Walled Structures 179 109690 (2022). DOI: https://doi.org/10.1016/j.tws.2022.109690
  • [26] S.M. Farzad Boroumand, Hossein Seyedkashi, M. Hossein Pol, Experimental study of mechanical properties and failure mechanisms of metal-composite laminates reinforced with multi-walled carbon nanotubes. Thin-Walled Structures 183, 110377 (2023). DOI: https://doi.org/10.1016/j.tws.2022.110377
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6df39b96-93ef-40f3-a15a-b8cc505df7f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.