PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of innovative solutions to improve the efficiency of the low-pressure cylinder flow part of a 1000 MW steam turbine for nuclear power plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The outcomes of gas-dynamic computations for the low-pressure cylinder component of the K-1000-60/1500-2M type low-speed steam turbine intended for use in nuclear power plants are presented in the paper. Various strategies for enhancing the low-pressure cylinder, incorporating a novel approach, which was not previously employed in low-speed high-power steam turbines, have been identified. The flow part redesign has been carried out through the comprehensive methodology and software imple-mented in the IPMFlow package. This methodology encompasses gas-dynamic computations of varying complexities and ana-lytical profiling methods for spatial blade row shapes based on a limited set of parameterized values. Real thermodynamic prop-erties of water and steam were considered in 3D turbulent flow calculations. The final stage involved end-to-end 3D computations of the 7-stage low-pressure cylinder, employing parallel computing technology. The results indicate that the innovative solutions incorporated in the developed low-pressure cylinder led to a substantial increase in both efficiency and power.
Rocznik
Strony
141--152
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine, Pozharskogo str. 2/10, Kharkiv, 61046, Ukraine
  • Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine, Pozharskogo str. 2/10, Kharkiv, 61046, Ukraine
  • Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine, Pozharskogo str. 2/10, Kharkiv, 61046, Ukraine
  • Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine, Pozharskogo str. 2/10, Kharkiv, 61046, Ukraine
  • Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine, Pozharskogo str. 2/10, Kharkiv, 61046, Ukraine
autor
  • Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine, Pozharskogo str. 2/10, Kharkiv, 61046, Ukraine
  • Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine, Pozharskogo str. 2/10, Kharkiv, 61046, Ukraine
Bibliografia
  • [1] Geletukha, G. (2020). Engagement of biomass CHP for power grid balancing in Ukraine. Thermophysics and Thermal Power Engineering, 42(3), 47−55. doi: 10.31472/ttpe.3.2020.5
  • [2] Engineer, Y., Rezk, A., & Hossain, A.K. (2021). Energy analysis and optimization of a small-scale axial flow turbine for organic Rankine cycle application. International Journal of Thermoflu-ids, 12, 100119. doi: 10.1016/j.ijft.2021.100119
  • [3] Jankowski, M., Klonowicz, P., & Borsukiewicz, A. (2021). Multi-objective optimization of an ORC power plant using one-dimensional design of a radial-inflow turbine with backswept ro-tor blades, Energy, 237, 121506. doi: 10.1016/j.energy.2021. 121506
  • [4] Musiał, A.M., Antczak, Ł., Jędrzejewski, Ł., & Klonowicz, P. (2021). Analysis of the use of waste heat from a glass melting furnace for electricity production in the organic Rankine cycle system. Archives of Thermodynamics, 42(1), 15–33. doi: 10.24425/ather.2021.136945
  • [5] Witanowski, Ł., Klonowicz, P., Lampart, P., Klimaszewski, P., Suchocki, T., Jędrzejewski, Ł., Zaniewski, D., & Ziółkowski, P. (2023). Impact of rotor geometry optimization on the off-design ORC turbine performance. Energy, 265, 126312, doi: 10.1016/j. energy.2022.126312
  • [6] Witanowski, Ł., Klonowicz, P., Lampart, P., Suchocki, T., Ję-drzejewski, Ł., Zaniewski, D., & Klimaszewski, P. (2020). Opti-mization of an Axial Turbine for a Small Scale ORC Waste Heat Recovery System. Energy, 205, 118059. doi: 10.1016/j.energy. 2020.118059
  • [7] Chantasiriwan, S. (2021). Comparative thermo-economic analy-sis of regenerative Rankine cycles with two feed water heaters. Case Studies in Thermal Engineering, 28, 101476, doi: 10.3390/ en17122816
  • [8] Wojciechowski, W., Streimikiene, D., Wojciechowski, A., & Bi-lan, Y. (2023). The role of nuclear energy in low carbon energy transition: evidence from panel data approach in EU. Environ-mental Science and Pollution Research International, 30, 124353–124373. doi: 10.1007/s11356-023-30827-8
  • [9] Leiter, T. (2022). Too Little, Too Slow? Climate Adaptation at the United Nations Climate Change Negotiations Since the Adop-tion of the Paris Agreement. Carbon & Climate Law Review, 16(4), 243–258. doi: 10.21552/cclr/2022/4/5
  • [10] European Commission. (2023). The European Green Deal. (2019). https://ec.europa.eu/commission/presscorner/detail/en/ ip_19_6691 [accessed 22 July 2024].
  • [11] Magazzino, C., Mele, M., Schneider, N., & Vallet, G. (2020). The relationship between nuclear energy consumption and economic growth: Evidence from Switzerland. Environmental Research Letters, 15, 0940. doi: 10.1088/1748-9326/abadcd
  • [12] European Commission. (2022) EU Taxonomy: Commission pre-sents Complementary Climate Delegated Act to accelerate decar-bonization. https://ec. europa.eu/commission/presscorner/detail/ en/ip_22_711 [accessed 22 July 2024].
  • [13] World Nuclear Association. (2023). World Nuclear Performance Report. COP26 Edition. https://www.world-nuclear.org/our-as-sociation/publications/ global-trends-reports/world-nuclear-per-formance-report.aspx [accessed 22 July 2024].
  • [14] Statista. (2024). Number of under construction nuclear reactors worldwide. https://www.statista.com/statistics/513671/number-of-under-construction-nuclear-reactors-worldwide/ [accessed 22 July 2024].
  • [15] Westinghouse Electric Company. (2022). Energoatom and West-inghouse Begin AP1000® Plant License Process in Ukraine. https://info.westinghousenuclear.com/news/energoatom-and-westinghouse-begin-plant-license-process [accessed 22 July 2024].
  • [16] Saylan, E., & Aygün, C. (2024). Thermoeconomic analysis and environmental impact assessment of the Akkuyu nuclear power plant. Journal of Thermal Analysis and Calorimetry, 149(12), 6531–6550. doi: 10.1007/s10973-024-13237-x
  • [17] Samatova, S.Y., Khidirovm M.M., Khamitjonov, O.B., & Mirza-yarov A.U. (2021). NPP Construction Economic Benefits For Uz-bekistan. International Journal of Engineering and Information Systems, 5(1), 162–165.
  • [18] Emerging Nuclear Energy Countries. (2024). World-Nuclear re-port. https://world-nuclear.org/information-library/current-and-future-generation/the-nuclear-debate [accessed 22 July 2024].
  • [19] World-Nuclear Association. (2024). Nuclear Power in the World Today. https://world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today [ac-cessed 22 July 2024].
  • [20] World-Nuclear Association. (2024). Nuclear Power in Ukraine. https://world-nuclear.org/information-library/country-pro-files/countries-t-z/ukraine.aspx [accessed 22 July 2024].
  • [21] Becker, O., Decker., K., & Mraz, G. (2021). NPP Zaporizhzhya lifetime-extension environmental impact assessment. Umwelt-bundesamt GmbH Online Library: https://www.umweltbun-desamt.at/fileadmin/site/publikationen/rep0775.pdf [accessed 22 July 2024].
  • [22] JSC "Ukrainian Energy Machines". (2023). Geography of sup-plies 2023. https://ukrenergymachines.com/en/map [accessed 22 July 2024].
  • [23] Oyedepo, S.O., Fakeye, B.A., Mabinuori, B., Babalola, P.O., Ler-amo, R.O., Kilanko, O., Dirisu, J.O., Udo, M., Efemwenkiekie, U.K., & Oyebanji, J.A. (2020). Thermodynamics analysis and performance optimization of a reheat-regenerative steam turbine power plant with feed water heaters. Fuel, 280, 118577. doi: 10.1016/j.fuel.2020.118577
  • [24] Rusanov, A., Subotin, V., Shvetsov, V., Rusanov, R., Palkov, S., Palkov, I., & Chugay, M. (2022). Application of innovative solu-tions to improve the efficiency of the LPC flow part of the 220 MW NPP steam turbine. Archives of Thermodynamics, 43(1), 63−87. doi: 10.24425/ather.2022.140925
  • [25] Yershov, S., Rusanov, A., Gardzilewicz, A., & Lampart, P. (1999). Calculations of 3D viscous compressible turbomachinery flows. Proc. 2nd Symp. on Comp. Technologies for Fluid, Ther-mal/Chemical Systems with Industrial Applications, ASME PVP Division Conf., PVP, 397.2, 143−154. 1−5 August, Boston, USA.
  • [26] Menter, F.R. (1994). Two-equation eddy viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. doi:10.2514/3.12149
  • [27] Rusanov, A.V., Lampart, P., Pashchenko, N.V., & Rusanov, R.A. (2016). Modelling 3D steam turbine flow using thermodynamic
  • properties of steam IAPWS-95. Polish Maritime Research, 23(1), 61–67. doi: 10.1515/pomr-2016-0009
  • [28] Lampart, P., Gardzilewicz, A., Rusanov, A., & Yershov, S. (1999). The effect of stator blade compound lean and twist on flow characteristics of a turbine stage - numerical study based on 3D RANS simulations. Proc. 2nd Symp. on Comp. Technologies for Fluid/Thermal/ Chemical Systems with Industrial Applica-tions, ASME PVP Division Conf., PVP, 397.2, 195–204. 1-5 Au-gust, Boston, USA.
  • [29] Rusanov, A., Rusanov, R., Klonowicz, P., Lampart, P., Żywica, G., & Borsukiewicz, A. (2021). Development and Experimental Validation of Real Fluid Models for CFD Calculation of ORC and Steam Turbine Flows. Materials, 14(22), 6879. doi: 10.3390/ ma14226879
  • [30] Lampart, P., Rusanov, A., Yershov, S., Marcinkowski, S., & Gar-dzilewicz, A. (2005). Validation of a 3D BANS solver with a state equation of thermally perfect and calorically imperfect gas on a multi-stage low-pressure steam turbine flow. Transactions of the ASME, Journal of Fluids Engineering, 127(1), 83−93.
  • [31] Lampart, P., Yershov, S., & Rusanov, A. (2005). Increasing flow efficiency of high-pressure and low-pressure stream turbine stages from numerical optimization of 3D blading. Engineering Optimization, 37, 145–166.
  • [32] Rusanov, A.V., Kostikov, A.O., Shubenko, O.L., Kharlampidi, D.K., Tarasova, V.O., & Senetskyi, O.V. (2019). Highly Efficient Cogeneration Power Plant with Deep Regeneration Based on Air Brayton Cycle. Journal of Mechanical Engineering, 22(4), 12−23. doi: 10.15407/pmach2019.04.012
  • [33] Fischer, P.F., & Venugopal, M. (1995). A commercial CFD ap-plication on a shared memory multiprocessor using MPI. Parallel Computational Fluid Dynamics, 231−238. doi: 10.1016/B978-044482322-9/50083-9
  • [34] Lampart, P., Gardzilewicz, A., Rusanov, A., & Yershov, S. (2001). Investigations of interaction of the main flow with root and tip leakage flows in an axial turbine stage by means of a source/sink approach for a 3D Navier-Stokes solver. Journal of Thermal Science, 10(3), 198–204. doi: 10.1007/s11630-001-0019-4
  • [35] Grigorieva, V.A., & Zorina, V.M. (1989). Thermal and Nuclear Power Plants: A Handbook (2nd edition., revised). Energoatomi-zdat.
  • [36] Brodov, Yu.M., & Saveliev, R.Z. (1994). Condensing units of steam turbines: Textbook for universities. Energoatomizdat.
  • [37] Levchenko, E.V., Shvetsov, V.L., Kozheshkurt, I.I., & Lobko, A.N. (2010). Experience of PJSC «Turboatom» in the develop-ment and modernization of turbines for nuclear power plants. Bulletin of the National Technical University "Kharkiv Polytech-nic Institute", 3: Energy and heat engineering processes and in-stallation, 8 p.
  • [38] Nguyen, K., & Laskin, A. (2015). Influence of u/c0 ratio on Un-steady Loads and Efficiency Level of Axial Turbine Stage. Sci-ence and Education of the Bauman, 6, 56−66. doi: 10.7463/ 0615.0786614
  • [39] Hryshyn, M., Zaytsev, B., Palkov, I., Kantor, O., & Pashchenko, Yu. (2019). Welded combined rotor for the steam turbine K-325-23.5. Bulletin of the National Technical University "Kharkiv Pol-ytechnic Institute". Series: Power and Heat Engineering Pro-cesses and Equipment, 3(1328), 66−75. doi: 10.20998/2078-774X.2019.03.10
  • [40] Rusanov, A., & Rusanov, R. (2021). The influence of stator-rotor interspace overlap of meridional contours on the efficiency of high-pressure steam turbine stages. Archives of Thermodynamics, 42(1), 97–114. doi: 10.24425/ather.2021.136
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6df0e13a-2b6f-4caf-be3a-6f588b23b676
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.