Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of tests carried out on the manufactured composite materials based on a two-phase NiAl/Ni3Al matrix, which was enriched with the addition of TiB2 ceramic particles added in an amount of 4 and 7 vol%. The resulting mixtures were sintered by the High Pressure High Temperature (HP-HT) process. The results were compared to the results obtained for the sole matrix material produced under the same conditions. It has been shown that, at a lower density, the addition of reinforcing particles increases the composite hardness, Young’s modulus and resistance to frictional wear. However, higher addition of TiB2 (7 vol%) was observed to yield less satisfactory results, and despite higher hardness and lower density caused a decrease in other properties tested. The produced materials were characterized by a compact and highly differentiated microstructure free from any noticeable cracks and pores.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1511--1520
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- Pedagogical University, Institute of Technology, Cracow, Poland
autor
- Pedagogical University, Institute of Technology, Cracow, Poland
autor
- AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 20, 30-059 Krakow, Poland
Bibliografia
- [1] C.T. Liu, Recent advances in ordered intermetallics, Materials Chemistry and Physics 42, 77-86 (1995).
- [2] S. C. Deevi, V. K. Sikka, C. T. Liu, Processing, properties, and applications of nickel and iron aluminides, Progress in Materials Science 42, 177-192 (1997).
- [3] C. M. Ward-Close, R. Minor & P. J. Doorbar, Intermetallic-matrix composites-a review Intermetallics 4, 217-229 (1996).
- [4] K. Bochenek, M. Basista, Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications, Progress in Aerospace Sciences 79, 136-146 (2015).
- [5] J. W. Choi, Y. M Kong, H. E. Kim, I. S. Lee, Reinforcement of Hydroxyapatite Bioceramic by Addition of Ni3Al and Al2O3, Journal of the American Ceramic Society 81, 1743-1748 (1998).
- [6] B. Torres, M. Lieblich, J. Ibáñez, A. Garcı́a-Escorial, Mechanical properties of some PM aluminide and silicide reinforced 2124 aluminium matrix composites, Scripta Materialia 47, 45-49 (2002).
- [7] M. T. Perez-Prado, M. E. Kassner, Chapter 9-Creep of Intermetallics, Fundamentals of Creep in Metals and Alloys (Third Edition), 189-232 (2015).
- [8] R. Darolia, NiAl Alloys for High. Temperature Structural Applications, JOM 43, 44-49 (1991).
- [9] D. B. Miracle, Overview No. 104 The physical and mechanical properties of NiAl, Acta Metallurgica et Materialia 41, 649-684 (1993).
- [10] V. K. Sikka, S. C. Deevi, S. Viswanathan, R. W. Swindeman, M. L. Santella, Advances in processing of Ni3Al-based intermetallics and applications, Intermetallics 8, 1329-1337 (2000).
- [11] E. P. George, C. T. Liu, D. P. Pope, Intrinsic ductility and environmental embrittlement of binary Ni3Al, Scripta Metallurgica et Materialia 28, 857-862 (1993).
- [12] C. Suryanarayana, Nasser Al-Aqeeli, Mechanically alloyed nanocomposites, Progress in Materials Science 58, 383-502 (2013).
- [13] G. Sauthoff, Multiphase intermetallic alloys for structural applications, Intermetallics 8, 1101-1109 (2000).
- [14] D. E. Alman, N. S. Stoloff, Powder fabrication of monolithic and composite NiAl, International Journal of Powder Metallurgy 27, 29-41 (1991).
- [15] C. C. Koch, Intermetallic matrix composites prepared by mechanical alloying - a review, Materials Science and Engineering: A 244, 39-48 (1998).
- [16] S. Wang, D. He, Y. Zou, J. Wei, L. Lei, Y. Li, J. Wang, W. Wang, and Z. Kou, High-pressure and high-temperature sintering of nanostructured bulk NiAl materials, Journal of materials research 24, 2089-2096 (2009).
- [17] R. K. Viswanadham, S. K. Mannan, K. S. Kumar, A. Wolfenden, Elastic modulus of NiAl-TiB2 composites in the temperature range 300 to 1273 K, Journal of Materials Science Letters 8, 409-410 (1989).
- [18] J. D. Whittenberger, R. K. Viswanadham, S. K. Mannan, B. Sprissler, Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300K, Journal of Materials Science January 25, 35-44 (1990).
- [19] R. S. Polvani, W. S Tzeng and P. R. Strutt, High temperature creep in a semi-coherent NiAl-Ni2AlTi alloy, Metallurgical and Materials Transactions A 7, 33-40 (1976).
- [20] S. Guha, P. R. Munroe, I. Baker, Room temperature deformation behavior of multiphase Ni- 20at.% Al- 30at.% Fe and its constituent phases, Materials Science and Engineering: A 131, 27-37 (1991).
- [21] I. Sulima., P. Putyra, P. Hyjek, T. Tokarski, Effect of SPS parameters on densification and properties of steel matrix composites, Advanced Powder Technology 26, 1152-1161 (2015).
- [22] A. A. Shokati, N. Parvin, M. Shokati, Combustion synthesis of NiAl matrix composite powder reinforced by TiB2 and TiN particulates from Ni–Al–Ti–BN reaction system, Journal of Alloys and Compounds 585, 637-643 (2014).
- [23] D. Kalinski, M. Chmielewski, K. Pietrzak, K. Choregiewicz, An influence of mechanical mixing and hot-pressing on properties of NiAl/Al2O3 composite, Archives of Metallurgy and Materials 57, 695-702 (2012).
- [24] E. Fraś, A. Janas, P. Kurtyka, S. Wierzbiński, Structure and properties of cast Ni3Al/TiC and Ni3Al/TiB2 composites. Part II. Investigation of mechanical and tribological properties and of corrosion resistance of composites based on intermetallic phase Ni3Al reinforced with particles of TiC and TiB2, Archives of Metallurgy and Materials 49, 113-141 (2004).
- [25] N. S. Stoloff, D. E. Alman, Innovative Processing Techniques for Intermetallic Matrix Composites, MRS Bulletin, 47-53 (1990).
- [26] J. R. Ramberg, W. S. Williams, High temperature deformation of titanium diboride, Journal of Materials Science 22, 1815-1826 (1987).
- [27] J. A. Moser, M. Aindow, W. A. T. Clark, S. Draper, H.L. Fraser, Compatibility of potential reinforcing ceramics with Ni and Fe aluminides, Intermetallic matrix composites, MRS Symposium, 379-384 (1990).
- [28] P. Klimczyk, L. Jaworska, V. Urbanovich, Mechanical Properties of Si3N4/SiC Composites With Various Additions, Acta Metallurgica Slovaca 17, 90-98 (2011).
- [29] I. Sulima, R. Kowalik, Microstructure, corrosion behaviors and mechanical properties of the steel matrix composites fabricated by HP-HT method, Materials Science and Engineering: A 639, 671-680 (2015).
- [30] I. Sulima, Consolidation of AISI316L Austenitic Steel - TiB2 Composites by SPS and HP-HT Technology, Sintering Techniques of Materials, ed. by Arunachalam Lakshmanan, Rijeka, InTech-Open Access Publisher; Chapter 7, 125-153 (2015).
- [31] P. Hyjek, I. Sulima, P. Malczewski, L. Jaworska, Application of HP-HT method in the manufacture of NiAl phase, Journal of Achievements in Materials and Manufacturing Engineering 55, 700-705 (2012).
- [32] P. Hyjek, I. Sulima, P. Figiel, NiAl composite reinforced with TiB2 ceramic particles, Innovative Manufacturing Technology 2013, ed. by Magdalena Szutkowska, 31-42 (2013).
- [33] ASTM G99-05, American Society for Testing and Materials, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, (1995).
- [34] ISO 18535:2016, Diamond-like carbon films–Determination of friction and wear characteristics of diamond-like carbon films by ball-on-disc method, (2016).
- [35] O. Ozdemir, S. Zeytin, C. Bindal, Tribological properties of NiAl produced by pressure-assisted combustion synthesis, Wear 265, 979-985 (2008).
- [36] Ş. Taktak, M. S. Başpınar, Observation of delamination wear of lubricious tribofilm formed on Si3N4 during sliding against WC-Co in humidity air, Tribology International 39, 39-49 (2006).
- [37] Y. Xiao, X. Shi, W. Zhai, J. Yao, Z. Xu, L. Chen, and Q. Zhu, Tribological Performance of NiAl Self-lubricating Matrix Composite with Addition of Graphene at Different Loads, Journal of Materials Engineering and Performance 24, 2866-2874 (2015).
- [38] R. Riedel, Handbook of ceramic hard materials, Weinheim, Wiley-Vch Verlag GmbH 2, 968-990 (2000).
- [39] D. B. Miracle, R. Darolia, NiAl and its Alloys, Structural Applications of Intermetallic Compounds, ed. by J.H. Westbrook and R. L. Fleischer, 55-74 (1995).
- [40] N. S. Stoloff, V. K. Sikka (eds.), Physical metallurgy and processing of intermetallic compounds, Chapman & Hall, New York (1996).
- [41] G. K. Dey, Physical metallurgy of nickel aluminides, Sadhana 28, 247-262 (2003).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6df01cf3-72eb-4454-b09d-e5180d1ab0f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.