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Summary 

The paper presents an application of the cointegration technique for temperature effect removal in 

Lamb wave data. The method is based on the analysis of cointegration residuals and stationary 

statistical characteristics. The experimental results on Lamb wave responses from undamaged and 

damaged aluminium plates show that the cointegration process can remove undesired temperature 

effects and accurately detect damage. 
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WYKRYWANIE USZKODZE  PRZY POMOCY FAL LAMBA - KOMPENSACJA WP YWU 

TEMPERATURY OPARTA O METOD  KOINTEGRACJI 

 

Streszczenie 

Fale Lamba stosowane s  do wykrywania uszkodze  w konstrukcjach p ytowych. Wp yw 

temperatury na amplitud  oraz faz  fal Lamba jest jedn  z g ównych przeszkód w powszechnym 

zastosowaniu tej metody w praktyce in ynierskiej. W pracy zastosowano metod  kointegracji do 

kompensacji wp ywu temperatury na propagacj  fal Lamba. Metoda oparta jest na badaniu 

stacjonarno ci sygna ów. Zastosowane podej cie pokazane jest na przyk adzie wykrywania szczelin 

zm czeniowych w p ytach aluminiowych. Wyniki pokazuj , e metoda kointegracji skutecznie usuwa 

z fal Lamba wszystkie efekty zwi zane z wp ywem temperatury, przyczyniaj c si  do wykrycia 

badanych uszkodze . 

  

S owa kluczowe: wykrywanie uszkodze  w konstrukcjach, fale Lamba, kointegracja, kompensacja wp ywu 

temperatury 

  
 

1. INTRODUCTION 

 

Lamb waves are the most widely used guided 

ulstrasonic waves for structural health monitoring 

(SHM) applications. Various damage detection 

methods – based on Lamb waves – have been 

developed for the last few decades, as reported and 

reviewed in [1–5]. However, despite many research 

developments, practical engineering applications are 

still limited. This is not only due to complex 

physical wave propagation mechanisms (e.g. 

multiple modes or dispersive nature) but also due to 

damage sensitivity that is often affected by 

operational and environmental conditions [6]. It 

appears that temperature variability (instantaneous, 

daily or seasonal) is one of the major problems [7,8]. 

Therefore it is important for practical applications of 

Lamb waves to develop methods that are sensitive 

only to damage but insensitive to operational-

environmental conditions, to avoid false-positive 

and false-negative damage detection scenarios. 

Various approaches were developed to deal with 

undesired effects of operational and environmental 

variability in SHM data, as presented in [6]. The 

cointegration method – developed originally from 

the field of econometrics [9] – has been proposed 

recently in process engineering for abnormality 

detection [10] and in structural damage detection for 

the removal of temperature effect from bridge 

vibration data and Lamb wave responses [11, 12]. 

The major idea used in these investigations is based 

on the concept of stationarity of time series. 

Monitored variables are cointegrated to create a 

stationary residual whose stationarity represents 

normal condition. Then any departure from 

stationarity can indicate that monitored structures 

are no longer operating under normal condition. 

This paper builds upon previous investigations 

on the cointegration technique for trend removal in 

Lamb wave data. The major objective is to present a 

new approach based on cointegration for the 

removal of temperature variability and damage 

detection based on Lamb waves. The augmented 

Dickey-Fuller (ADF) test [13] is used not only to 

test the degree of non-stationarity of variables, but 

also to create a damage detection indicator. 
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2. PREVIOUS STUDY ON TEMPERATURE 

EFFECT REMOVAL IN LAMB-WAVE-

BASED SHM 

 

Lamb-wave-based SHM in principle is based on 

guided ultrasonic waves introduced into a structure 

at one point and sensed at a different location. 

Damage in a structure can be then identified by 

monitoring changes in the output signal. Signal 

attenuation and/or mode conversion is sufficient to 

detect various types of damage such as cracks in 

metallics or delamination in composites [2]. Lamb-

wave-based damage damage techniques have shown 

great potential for SHM applications since they 

feature [3]: (1) the ability to inspect large structures 

as well as insulated structures (e.g. pipeline under 

water); (2) the ability to examine the entire cross-

sectional area of a structure including both internal 

damage and surface defects; (3) the capability of 

classifying various types of damage using different 

wave modes; (4) excellent sensitivity to damage 

with high precision of identification; and (5) low 

energy consumption and great cost-effectiveness. 

However, as discussed above temperature 

variability has a dominant effect on Lamb waves 

therefore various approaches have been proposed to 

overcome this effect in which some representative 

works are summarised hereinafter. 

The early proposed approaches are based on 

soft computing [14, 15]. The first publication 

reported a unique combination of time series 

analysis, neural networks, and statistical inference 

techniques. Several methods – such as feature 

extraction based on signal decomposition and 

principle component analysis – were investigated in 

the second publication. Various machine learning 

tools that could be used in these approaches were 

reviewed and extensively discussed in [16]. 

Two different methods were presented in [17]. 

The first one proposed to record reference signals 

over a range of temperatures and then to use these 

signals in the ensemble that best matches a 

subsequent signal for subtraction. The second 

method relies on the improvement of sensitivity via 

an exact compensation scheme for the temperature 

change. Both methods would require large reference 

databases in practical applications. This could be 

often expensive and not always possible. Efficient 

modeling could ease this task, as demonstrated in 

[18]. 

A reference-free approach – based on properties 

of fundamental Lamb wave mode propagation – has 

been proposed in [19]. Baseline subtraction methods 

– based on multiple baselines – have been proposed 

in [8]. Instead of using a single baseline for 

subtraction purposes, a series of baselines are used, 

covering the range of operating conditions of the 

structure. This approach is known as Optimal 

Baseline Selection (OBS). More recently, a new 

Baseline Signal Stretch (BSS) method have been 

proposed in [20]. A combined strategy that uses both 

OBS and BSS was also considered in this work. 

A model that accounts for relevant temperature-

dependent Lamb wave propagation parameters was 

investigated in [7]. This work underlines the effect 

of temperature on transducer properties. The role of 

piezoceramic adhesive layers in structures exposed 

to elevated temperatures was investigated. 

 

3. COMMON TREND REMOVAL BY USING 

THE COINTEGRATION METHOD 

 

For the sake of completeness this section briefly 

introduces the concept of cointegration. Firstly, 

stationarity and non-stationarity are explained. 

For a given time series ty  presented in the form 

of the first-order Auto-Regressive process )1(AR , 

which is defined as 

ttt yy 1  (1) 

where t  is an independent Gaussian white 

noise process with zero mean, three different time 

series can be distinguished. These are [21]: 

stationary time series ( 1 ) – the process 

looks irregular, but always oscillates around the 

mean; 

non-stationary time series ( 1 ) – the process 

is initially smooth but eventually becomes 

rough; 

random walk ( 1 ) – the process moves up 

and down; it behaves as a non-stationary time 

series, but slowly. 

In practice time-invariant behaviour can be 

indicated by statistical moments of the process. A 

stationary process would have time invariant 

moments while a non-stationary process would 

exhibit some time dependence in moments. It is well 

known that the most simple stationary time series is 

the independent Gaussian white noise process [21]. 

The time series ty  in Eq. (1) is an integrated series 

of order 1, denoted )1(I , if it has the form of 

random walk (i.e. 1 ) without a trend [22]. When 

1 , Eq. (1) yields 

tttt yyy 1  (2) 

This clearly shows that, the first difference of 

ty  is just a white noise process t , i.e. a stationary 

time series. The consequence is that a non-stationary 

)1(I  time series becomes a stationary )0(I  time 

series after the first difference. In a similar way, a 

non-stationary )2(I  time series would require 

differencing twice to induce a stationary )0(I  time 

series. The number of differences required to 

achieve stationarity is called the order of integration. 

Thus time series of order d  are denoted as )(dI . 

Following this short introduction, the concept of 

cointegration can be introduced. Let 
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T
ntttt yyy ),,,( 21  denote an )1(n  vector 

of )1(I  time series. Then t  is cointegrated if there 

exists an )1(n  vector 
T

n ),,,1( 2  

such that 

 
 

In other words, the non-stationary )1(I  time 

series in t  are cointegrated if there exists (at least) 

a linear combination of them that is stationary or has 

the )0(I  status. The linear combination, denoted 

)0(~ It
T

, is referred to as a cointegration 

residual or a long-run equilibrium relationship 

between time series [22]. The  vector is called a 

normalized cointegrating vector. It can be noticed 

that the action of creating the cointegration residual 

( t
T

tu ) is the action of projecting the )1(n  

t  vector on the cointegrating vector , or in other 

words applying the cointegrating vector  to the 

)1(n  t  vector. 

Testing for cointegration is in essence testing 

for the existence of long-run equilibriums (or 

stationary linear combinations) among the elements 

of t  [22]. However, before any attempt is made to 

test for that existence, two constraints (or pre-

requirements) related the time series in t  need to 

be fulfilled. Firstly, the analysed time series must 

have at least a common trend. Secondly, the 

analysed time series must have the same degree of 

non-stationarity, i.e. they must be integrated of the 

same order. 

If the )1(n  vector of )1(I  time series in t  

is cointegrated with nr0  cointegrating vectors 

then there are rn  common stochastic trends [22]. 

For n  variables, the cointegration process may 

create as many as 1n  linearly independent 

cointegrating vectors. To illustrate the duality 

between cointegration and common trends, let 

)1(~),( 21 Iyy T
ttt       and 

)0(~),,( 321 IT
tttt  (3) 

and suppose that t  is cointegrated with the 

normalized cointegrating vector 
T),1( 2 . 

This cointegration relationship may be represented 

as 

t

t

s
sty 3

1
121        and 

t

t

s
sty 2

1
12  (4) 

where the common trend is 
t

s s1 1 . As illustrated 

below, the cointegration process removes the 

common stochastic trend and the cointegration 

residual t
T

 obtained is a stationary )0(I  time 

series, i.e. 

   ttt
T yy 221  

t

t

s

st

t

s

s 2

1

123

1

12  

)0(~223 Itt  (5) 

 

One of the most common approaches used to 

determine the existence of cointegration and the 

number of linearly independent cointegrating vectors 

(or relationships) among multivariate non-stationary 

time series in t  were developed in [23]. This so-

called Johansen’s cointegration procedure basically 

is a combination of cointegration and error 

correction models in a Vector Error Correction 

Model (VECM) form. This is a sophisticated 

sequential procedure and thus is not presented in this 

paper. For a complete description of the Johansen 

procedure, readers are referred to [23]. In this study, 

the Johansen’s cointegration procedure was realized 

by using the Econometrics Toolbox [24]. 

Next, an example that uses the Johansen’s 

cointegration procedure to remove common trends 

in the simulated data is presented. The Weierstrass-

Mandelbrot (W-M) cosine fractal function is used in 

the analysis because of its non-linear and non-

stationary nature. The W-M cosine fractal function 

is given by [25] 

N

Nj
jD

p

j

i
B

N

i
B

W
)2(

cos1

 (6) 

where pNi 1 , with pN  is the total number of 

data samples; and the parameter D  and B  must be 

in the range 21 D  and 1B , respectively. 

In this example, three W-M cosine fractal 

functions (e.g. variables x, y, z) are used (see Fig. 1). 

Clearly, they share one common stochastic trend, i.e. 

the positive drift (or upward trending). When these 

three variables – sharing a common trend – are 

cointegrated, the cointegration process results in two 

cointegrating vectors (i.e. 2r ), in which 

The first cointegrating vector is: 
T

16.099.162.111  (7) 

The second cointegrating vector is: 
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T
03.221.112.012  (8) 
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Fig. 1. Three W-M cosine fractal functions (x, y, z). 

Next, projecting three variables (x, y, z) on the 

two obtained cointegrating vectors that results in two 

cointegration residuals in Fig. 2 and Fig. 3. It is easy 

to observe that the cointegration residual in Fig. 2 – 

which uses the first cointegrating vector is more 

stationary than the one in Fig. 3 – which uses the 

second cointegrating vector. The results obtained in 

Fig. 2 and Fig. 3 also showed that the positive drift 

trending was removed from the W-M variables. 
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Fig. 2. The first cointegration residual obtained when three W-M 

variables are projected on the first cointegrating vector. 
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Fig. 3. The second cointegration residual obtained when three W-

M variables are projected on the second cointegrating vector. 

4. LAMB WAVE EXPERIMENTAL DATA 

WITH TEMPERATURE TRENDS 

 

Experimental data used in this paper originate 

from a series of tests described in [15]. Lamb waves 

were propagated in an aluminium plate (200 x 150 x 

2 mm) aluminum plate of 2 mm thickness was used 

in these experiments. Two low-profile, surface-

bonded piezoceramic Sonox P155 transducers 

(diameter 10 mm and thickness 1 mm) were used for 

Lamb wave generation and sensing. 

A five-cycle 75 kHz cosine burst signal was 

used for Lamb wave generation. The excitation 

signal was enveloped using a half-cosine envelope. 

The maximum peak-to-peak amplitude of the 

excitation signal was equal to 10 V. This excitation 

led to the so-called single Lamb wave mode 

propagation, i.e. the A0 fundamental Lamb wave 

mode was generated whereas the amplitude of the 

S0 mode was negligible. The excitation signal was 

generated using the TTi TGA 1230 arbitrary 

waveform generator. Lamb wave responses were 

acquired using a digital 4-channel LeCroy LT264 

Waverunner oscilloscope. Both instruments, i.e. the 

signal generator and the oscilloscope, were 

controlled in MATLAB through the General 

Purpose Control Bus (GPIB) protocol standard, 

running on a standard PC. Fig. 4. shows a schematic 

diagram of the experimental arrangement. 

 
Fig. 4. Experimental arrangement. 

 

The plate was placed in a 100 liter LTE

Scientific oven to obtain data for various temperature 

levels. The temperature on the surface of the plate 

was measured using a thermal probe. Firstly, the 

experimental tests were performed using the intact 

plate. The plate was firstly heated up (from 350C to 

700C) and then cooled down (from 700C to 350C) 

with a step change of 50C. The heating and cooling 

cycles were performed twice to address the problem 

of repeatability and check for possible hysteresis 
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between cycles. Then, a hole was drilled the middle 

of the plate and the entire experimental work was 

repeated. 

The analysis presented in this paper utilised 

lamb wave data for the undamaged plate and the 

damaged plate with 5 mm hole – measured at four 

different temperatures (i.e. 35, 45, 60 and 700C). 

Altogether twenty Lamb wave responses were used 

for each single combined damage-temperature 

condition and each response measurement consists 

of 5000 data samples acquired using the sampling 

rate of 10 MHz. Strong influence of temperature on 

lamb wave responses was observed, as reported 

previously in [15, 18]. 

 

5. EXPERIMENTAL RESULTS 

 

This section presents the temperature effect 

removal and damage detection results based on the 

proposed cointegration-based method. Lamb wave 

experimental data described in the previous section 

were used in this analysis. 

The cointegration analysis and the ADF test 

were performed using the Lamb wave experimental 

data. The entire procedure consists of three schemes: 

(1) ADF test on the “pre-cointegrated data”; 

(2) Cointegration of Lamb wave responses; 

(3) ADF test on the “post-cointegrated data”. 

It is well known that whenever the cointegration 

method is used, the ADF test is firstly performed to 

measure the degree of stationarity or non-stationarity 

of the analysed variables. In principle, the more 

negative the ADF t-statistic value is obtained, the 

more stationary the signal is, as shown in [11,12]. 

The assumption is that damage introduced to the 

plate can change stationarity of Lamb wave data. In 

addition, different severities of damage can produce 

Lamb wave responses with different stationary 

characteristics. If this is the case, then not only the 

existence of damage can be detected, but also its 

severity can be assessed. Hence, the ADF test can be 

used not only to test for stationarity but also to 

detect damage and judge its severity. Following 

[12], the average ADF t-statistics are used in this 

study to assess the degree of stationarity of the 

analysed data and to detect possible damage. 

In the first scheme, twenty Lamb wave 

responses from each single combined damage-

temperature condition were directly used in the ADF 

test. This analysis resulted in ADF t-statistic 

features, in which each feature consists of twenty 

ADF t-statistic values that correspond to twenty 

Lamb wave responses used in the ADF test. The 

results in Fig. 5 are presented for the undamaged 

plate and the damaged plate with 5 mm hole at four 

different temperatures investigated. All statistics 

vary abruptly and do not exhibit any immediate 

patterns. Lamb wave responses are corrupted by 

temperature and the relevant average ADF t-

statistics are also influenced by this effect. The 

average ADF t-statistics for the undamaged plate 

and the damaged plate are relatively separated when 

the temperature is equal to 350C. However, once the 

temperature increases these statistics are overlapped. 
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Fig. 5. ADF test results for the pre-cointegrated Lamb wave data. 

In the second scheme, twenty Lamb wave 

responses from each single combined damage-

temperature condition were cointegrated by using 

the Johansen’s cointegration procedure. For the data 

used the cointegration process creates as many as 

nineteen linearly independent cointegrating vectors, 

which subsequently can be used to produce nineteen 

cointegrating residuals (i.e. post-cointegrated Lamb 

wave responses) after the data projection process. 

In the third scheme, nineteen cointegrating 

residuals obtained from the second scheme were 

used in the ADF test (or in other words, the ADF 

test was performed on the post-cointegrated Lamb 

wave responses. This analysis resulted in ADF t-

statistic features, in which each feature consists of 

nineteen ADF t-statistic values that correspond to 

nineteen cointegrating residuals obtained from the 

cointegration process. 

The results in Fig. 6 for different temperatures 

investigated show that the average ADF t-statistics 

for the undamaged plate and the damaged plate are 

very well separated. Interestingly, these statistics 

display large negative values (i.e. smaller than -25) 

for the first cointegrating residual; whereas, the 

relevant statistics for the remaining residuals are 

relatively stable and remain between -10 and -5. In 

this case, the 1st cointegrating vector created the 

most stationary cointegrating residual. The statistics 

for the damaged plate with the 5 mm hole increase 

monotonically from the 2nd to the 19th residual. It is 

important to emphasize that these statistics are quite 

similar for all temperatures investigated. This is due 

to the fact that the temperature effect was purged 

from the Lamb wave data by the cointegration 

process. Therefore, the ADF test was applied 

effectively to the cointegrating residuals that were 

free from temperature variations. This is why these 

statistics are relatively stable if compared with the 

relevant statistics in Fig. 5. 
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Fig. 6. ADF test results for the post-cointegrated Lamb wave data. 

 

6. CONCLUSIONS 

 

By applying the cointegration analysis, the 

varying temperature effect is successfully removed 

from Lamb wave responses and therefore the 

cointegrating residuals obtained are free from 

temperature variations. 

When the ADF test is applied to the 

temperature-effect-purged cointegrating residuals, 

the damaged plate with 5 mm hole can be easily 

detected. 

Although, the results obtained are interesting, 

further research work is required to confirm these 

findings. This work should focus on: more complex 

structures, real damages (e.g. fatigue cracks in 

metals or delaminations in composites) and different 

damage detection strategies (wave propagation 

paths, transducer schemes, etc.). 
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