PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Biodegradation of Crude Oil Spill Using Bacillus Subtilis and Pseudomonas Putida in Sequencing Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Crude oil, otherwise called petroleum, occurs naturally as a complex organic mixture underneath the subsurface. The activities related to its exploration, production, refining, storage and distribution are mostly accompanied with extreme pollution and other hazardous conditions. For these reasons, the need to critically devise the best possible solutions becomes paramount, particularly as regards oil spills. Therefore, the purpose of this research was to determine the efficiency of TPH removal in crude oil using Bacillus Subtilis and Pseudomonas Putida. The sequencing method was applied in a laboratory scale and under artificial seawater media conditions. The total petroleum hydrocarbon (TPH) serves as a significant parameter in detecting crude oil, although the extraction and analysis were conducted with the use of a separator funnel and gas chromatography mass spectrometry (GCMS), respectively. In addition, the simulated seawater media was described as the mineral salt medium (MSM), with 33% salinity. Moreover, five reactors were also employed, including K for control, B for B. subtilis, P for P. putida, BP for B. subtilis and P. putida sequence and PB for P. putida and B. subtilis sequence. The entire treatments obtained the access to two replicate reactors. Furthermore, the bacteria inoculum and crude oil concentration in each unit were estimated at 5% and 10% (v/v), respectively. The results achieved the maximum TPH removal at 66.29% in the PB reactor after 35 days. On the basis of ANOVA reports, no significant variation was observed between the sequential additions of a single bacterial treatment and consortium microbes. In summary, two bacterial species demonstrated high potential to degrade TPH, but predicted an increase in the break down time, as the nutrient or oxygen tends to accelerate the process.
Rocznik
Strony
157--167
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
  • Department of Ocean Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
Bibliografia
  • 1. The Minister of Environment Decree of Indonesia. 2003. The Procedures of Technical Requirements for Waste Oil and soil contaminated by Petroleum Biological, 128.
  • 2. EPA. 1999. Understanding Oil Spills And Oil Spill Response.
  • 3. Hadi S., Radjawane I.M. 2009. Arus Laut. Institut Teknologi Bandung, Bandung.
  • 4. Wibowo M. 2018. Pemodelan Sebaran Pencemaran Tumpahan Minyak di Perairan Cilacap. Jurnal Teknologi Lingkungan, 19(2).
  • 5. Darmayanti Y. 2013. Pengenalan tentang Bioremediasi untuk Perairan Pantai Tercemat Minyak. Oseana XXXVIII: 69–78.
  • 6. Palanisamy N., Ramya J., Kumar S., Vasanthi N.S., Chandran P., dan Khan S. 2014. Diesel Biodegradation Capacities of Indigenous Bacterial Species Isolated from Diesel Contaminated Soil. Journal of Environemtantal Health Science and Engineering, 12(142), 1–8.
  • 7. AlDisi Z., Jaoua S., Al-Thani D., AlMeer S., dan Zouari N. 2016. Isolation, Screening and Activity of Hydrocarbon Degrading Bacteria from Harsh Soils. Proceedings of the World Congress on Civil, Structural, and Environmental Engineering, Prague, Czech Republic, March 30–31, 2016.
  • 8. Sudrajat D., Mulyana N., dan Retno T. 2015. Isolasi dan Aplikasi Mikroba Indigen Pendegradasi Hidrokarbon dari Tanah Tercemar Minyak Bumi. Makalah disajikan dalam Pertemuan dan Presentasi Ilmiah, Yogyakarta 9–10 Juni 2015.
  • 9. Vinothini C., Sudhakar S., dan Ravikumar R. 2015. Biodegradation of Petroleum and Crude Oil by Pseudomonas putida and Bacillus cereus. International Journal of Current Microbiology and Applied Sciences, 4(1), 318–329.
  • 10. Wardhani W.K, Titah H.S., Pratikno H., Purwanti I.P. 2020. Range Finding Test of Crude Oil on Bacillus subtilis and Pseudomonas putida. Prosceeding of International Symposium on Current Progress in Mathematics and Sciences, Universitas Indonesia.
  • 11. Ibrahim H.M.M. 2016. Biodegradatio of Used Engine oil by Novel Strains of Ochobacterium anthropic HM-1 and Citrobacter freundii HM-2 Isolated from Oil-Contaminated Soil. Biotechnology, 3(226), 1–13.
  • 12. Ramasamy S., Arumugam A., Chandran P.D. 2017. Optimization of Enterobacter cloacae (KU923381) for Solar Oil Degradation using Response Surface Methodology (RSM). Journal of Microbiology, 55(2), 104–111.
  • 13. Imron M.F. 2018. Optimasi Proses Biodegradasi Solar oleh Isolat Bakteri dengan Menggunakan Response Surface Methodology (RSM) Desain Box Behnken. Tesis Departemen Teknik Lingkungan ITS.
  • 14. Nadhirawaty R. 2019. Bioremediasi Tanah Tercemar Hidrokarbon di Lokasi Pembongkaran Kapal Kabupaten Bangkalan Madura. Tesis Departemen Teknik Lingkungan ITS.
  • 15. Harley J.P., Prescott L.M. 2002. Laboratory exercises in microbiology. Fifth Edition. McGraw−Hill Companies, Texas.
  • 16. Darsa K.V., Thatheyus A.J., Ramya D. 2014. Biodegradation of petroleum compound using the bacterium Bacillus subtilis. Sci. Int., 2, 20–25. DOI: 10.17311/sciintl.2014.20.25
  • 17. Nwinyi O.C., Kanu I.A., Tunde A., Ajanaku K.O. 2014. Characterization of diesel degrading bacterial species from contaminated tropical ecosystem. Braz. Arch. Biol. Technol., 57, 789–756. DOI: 10.1590/S1516–8913201402250
  • 18. Andriani Y., Safitri R., Rochima E., dan Fakhrudin S.D. 2017. Characterization of Bacillus subtilis and B. licheniformis potentials as probiotic bacteria in Vanamei shrimp feed (Litopenaeus vannamei Boone, 1931), 9(2), 188–193.
  • 19. Elsayed B.B., El-Nady M.F. 2013. Bioremediation of pendimethalin-contaminated soil. African Journal of Microbiology Research, 7(21), 2574–2588.
  • 20. Annadurai G., Ling L.Y., Lee J.F. 2008. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J. Hazard. Mater., 151, 171–178.
  • 21. Moore E.R., Tindall B.J., Martins D.S., Pieper D.H., Ramos J.L., Palleroni N.J. 2006. Nonmedical: Pseudomonas. Prokaryotes, 6, 646–703.
  • 22. Palleroni N.J. 2005. Genus I. Pseudomonas Migula 1894, 237AL (Nom. Cons., Opin. 5 of the Jud. Comm. 1952, 121). In: Bergey’s Manual of Systematic Bacteriology. The Proteobacteria. The Gammaproteobacteria, Brenner, D.J., Krief N.R., Staley J.T. (eds.). New York, Springer; 2(B), 323–373.
  • 23. Alagappan G., Cowan R.M. 2004. Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere, 54(8), 1255–1265.
  • 24. Medjor W.O., Akpoveta V.O., Adebowale M.E. 2018. Remediation of hydrocarbons contaminated groundwater by silica encapsulation technique. Water-Energy Nexus, 1(2), 134–141.
  • 25. Ţigănuș D., Coatu C., Lazăr L., Oros A. 2016. Present Level Of Petroleum Hydrocarbons In Seawater Associated With Offshore Exploration Activities From The Romanian Black Sea Sector. Cercetări Marine, 46, 98–108.
  • 26. Inyang S.E., Aliyu A.B., Oyewale A.O. 2018. Total Petroleum Hydrocarbon Content in Surface Water and Sediment of Qua-Iboe River, Ibeno, AkwaIbom State, Nigeria. J. Appl. Sci. Environ. Manage., 22(12), 1953–1959.
  • 27. Hamill P.G., Stevenson A., McMullan P.E., Williams J.P., Lewis A.D.R., Sudharsan S., Stevenson K.E., Farnsworth K.D., Khroustalyova G., Takemoto J.Y., Quinn J.P., Rapoport A., Hallsworth J.E. 2020. Microbial lag phase can be indicative of, or independent from, cellular stress. Scientific Reports, 10, 5948. https://doi.org/10.1038/s41598–020–62552–4
  • 28. Azubuike C.C., Chikere B.C., Okpokwasili G.C. 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol, 32, 180.
  • 29. Darmayanti Y., dan Afianti N.F. 2017. Penerapan dan Tingkat Efektivitas Teknik Bioremediasi untuk Perairan Pantai Tercemar Minyak. Oseana, 17(4), 55–69.
  • 30. Nugroho A. 2007. Dinamika Populasi Konsorsium Bakteri Hidrokarbonoklastik: Studi Kasus Biodegradasi Hidrokarbon Minyak Bumi Skala Laboratorium. Jurnal Ilmu Dasar, 8(1), 13–23.
  • 31. Sumarsono T. 2009. Efektivitas Jenis dan Konsentrasi Nutrien dalam Bioremediasi Tanah Tercemar Minyak Mentah yang Diaugmentasi dengan Konsorsium Bakteri. Skripsi. Departemen Biologi FSAINTEK Universitas Airlangga, Surabaya.
  • 32. Wenti M.J.S. 2012. Biodegradasi Oil Sludge dengan Variasi Lama Waktu Inkubasi dan Jenis Konsorsium Bakteri yang Diisolasi dari Lumpur Pantai Kenjeran. Skripsi Program Studi Biologi Universitas Airlangga, Surabaya.
  • 33. Siahaan S., Hutapea M., dan Hasibuan R. 2013. Penentuan Konsdisi Optimum Suhu dan Waktu Karbonisasi pada Pembuatan Arang dari Sekam Padi. Jurnal Teknik Kimia USU, 2(1).
  • 34. Das N., dan Chandran P. 2011. Microbial Degradation of Petroleum Hydrocarbon Contamination: An Overview. Biotechnology Research International, (1), 1–14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6de8c0e9-2a4c-4da2-89e4-5d24934e373b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.