Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: In the current study anion-exchange membranes comprised of different functional groups were prepared to be used as electrolyte in fuel cells. Design/methodology/approach: Polysulfone was firstly chloromethylated followed by nucleophilic substitution reaction with the corresponding N-compound, trimethylamine and 1-methylbenzimidazole to obtain the resulting quaternary ammonium and benzimidazolium functionalized membranes, respectively. The membranes thus prepared as well as the starting polymers were characterized by 1H-NMR and FTIR analysis. Findings: The thermal stability of the membranes was lower than the original polymers. However, both membranes exhibited high thermal stability for typical fuel cell operation temperatures below 100°C. The capacity of these materials to absorb water was more favored when benzimidazolium groups were inserted to the polymer instead of quaternary ammonium ones. The ionic conductivity of the membranes in dilute aqueous solution of potassium hydroxide was studied by means of impedance spectroscopy. The results show a clear correlation between the membrane’s electrochemical behaviour with the electrolyte solution embedded in the membrane. In addition, the nature of the functional group modifies the membrane ionic conductivity. So, the membrane ionic conductivity was more than twice as high when the quaternary ammonium groups were replaced by the benzimidazolium ones. Research limitations/implications: The nature of the functional group as well as the number of exchangeable groups plays an important role on the ionic transport through the membrane. Therefore, the membrane ionic conductivity could be significantly improved by modifying the chemical structure of the polymer. Originality/value: The current study describes the main properties of benzimidazolium functionalized membranes. The electrochemical characteristics of this material as well as the thermal stability have been compared to the most commonly used comprising quaternary ammonium groups.
Wydawca
Rocznik
Tom
Strony
16--25
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad, 30, E-28911-Leganés, Spain
autor
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad, 30, E-28911-Leganés, Spain
autor
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad, 30, E-28911-Leganés, Spain
autor
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad, 30, E-28911-Leganés, Spain
Bibliografia
- [1] B.C.H. Steele, Material science and engineering: The enabling technology for the commercialisation of fuel cell systems, Journal of Materials Science 36 (2001) 1053-1068.
- [2] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy 35 (2010) 9349-9384.
- [3] R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, et al., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chemical Reviews 107 (2007) 3904-3951.
- [4] J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucemak, W.E. Mustain, K. Nijmeijer, K. Scott, T. Xu, L. Zhuang, Anion-exchange membranes in electrochemical energy systems, Energy and Environmental Science 7 (2014) 3135-3191.
- [5] G.F. McLean, T. Niet, S. Prince-Richard, N. Djilali, An assessment of alkaline fuel cell technology, International Journal of Hydrogen Energy 27 (2002) 507-526.
- [6] J.R. Varcoe, R.C.T. Slade, Prospects for Alkaline Anion-Exchange Membranes in Low Temperature Fuel Cells, Fuel Cells 5 (2005) 187-200.
- [7] A. Holewinski, J.C. Idrobo, S. Linic, High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction, Nature Chemistry 6 (2014) 828-834.
- [8] S. Lu, J. Pan, A. Huang, L. Zhuang, J. Lu, Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts, Proceedings of the National Academy of Sciences USA 105 (2008) 20611-20614.
- [9] C.G. Morandi, R. Peach, H.M. Krieg, J. Kerres, Novel morpholinium-functionalized anion-exchange PBI-polymer blends, Journal of Materials Chemistry A3 (2015) 1110-1120.
- [10] Z. Si, Z. Sun, F. Gu, L. Qiu, F. Yan, Alkaline stable imidazolium-based ionomers containing poly(arylene ether sulfone) side chains for alkaline anion exchange membranes, Journal of Materials Chemistry A 2 (2014)4413-4421.
- [11] Q. Li, L. Liu, Q. Miao, B. Jin, R. Bai, A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes, Chemical Communications 50 (2014) 2791-2793.
- [12] M.T. Perez-Prior, A. Varez, B. Levenfeld, Synthesis and characterization of benzimidazoliumfunctionalized polysulfones as anion-exchange membranes, Journal of Polymer Science Part A Polymer Chemistry (2015) DOI: 10.1002/pola.27692.
- [13] S. Maurya, S.H. Shin, M.K. Kim, S.H. Yun, S.H. Moon, Stability of composite anion exchange membranes with various functional groups and their performance for energy conversion, Journal of Membrane Science 443 (2013) 28-35.
- [14] M.T. Pérez-Prior, T. García-García, A. Várez, B. Levenfeld, Preparation and characterization of ammonium-functionalized polysulfone/Al20 3 composite membranes, Journal of Materials Science 50 (2015) 5893-5903.
- [15] J. Wang, S. Li, S. Zhang, Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications, Macromolecules 43 (2010) 3890-3896.
- [16] X. Yan, G. He, S. Gu, X. Wu, L. Du, Y. Wang, Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells, International Journal of Hydrogen Energy 37 (2012) 5216-5224.
- [17] J.E. Harris, Engineering Thermoplastics: Properties and Applications; J.M. Margolis, Eds., Dekker, New York, 1985.
- [18] G. Couture, A. Alaaeddine, F. Boschet, B. Ameduri, Polymeric materials as anion-exchange membranes for alkaline fuel cells, Progressin Polymer Science 36 (2011) 1521-1557.
- [19] J. Pan, S. Lu, Y. Li, A. Huang, L. Zhuang, J. Lu, High-perfomance alkaline polymer electrolyte for fuel cell applications, Advanced Functional Materials 20 (2010) 312-319.
- [20] N. Pantamas, C. Khonkeng, S. Krachodnok, A. Chaisena, Ecofriendly and simplified synthetic route for polysulfone-based solid-state alkaline electrolyte membrane, American Journal of Applied Sciences 9 (2012) 1577-1582.
- [21] E. Avram, M. A. Brebu, A. Warshawsky, C. Vasile, Polymers with pendant functional groups. V. Thermooxidative and thermal behavior of chloromethylated polysulfones, Polymer Degradation and Stability 69 (2000) 175-181.
- [22] J. Benavente, X. Zhang, R. Garcia Vails, Modification of polysulfone membranes with polyethylene glycol and lignosulfate: electrical characterization by impedance spectroscopy measurements, Journal of Colloid and Interface Science 285 (2005) 273-280.
- [23] S. Singh, A. Jasti, M. Kumar, V.K. Shahi, A green method for the preparation of highly stable organicinorganic hybrid anion-exchange membranes in aqueous media for electrochemical processes, Polymer Chemistry 1 (2010) 1302-1312.
- [24] J. Ran, L. Wu, J.R. Varcoe, A.L. Ong, S.D. Poynton, T. Xu, Development of imidazolium-type alkaline anion exchange membranes for fuel cell application, Journal of Membrane Science 415 (2012) 242-249.
- [25] G. Molnâr, A. Botvay, L. Poppl, K. Torkos, J. Borossay, A. Mâthe, T. Torok, Thermal degradation of chemically modified polysulfones, Polymer Degradation Stability 89 (2005) 410-417.
- [26] X. Lin, X. Liang, S.D. Poynton, J.R. Varcoe, A.L. Ong, J. Ran, Y. Li, Q. Li, T. Xu, Alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells, Journal of Membrane Science 443 (2013) 193-200.
- [27] S. Gu, R. Cai, Y. Yan, Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes, Chemical Communications 47 (2011) 2856-2858.
- [28] R. Vinodh, M. Purushothaman, D. Sangeetha, Novel quatemized polysulfone/Zr02 composite membranes for solid alkaline fuel cell applications, International Journal of Hydrogen Energy 36 (2011) 7291-7302.
- [29] L. An, T. S. Zhao, Q. X. Wu, L. Zeng, Comparison of different types of membrane in alkaline direct ethanol fuel cells, International Journal of Hydrogen Energy 37 (2012) 14536-14542.
- [30] J.S. Park, J.W. Park, E. Ruckenstein, A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinyl alcohol)/methylcellulose blends, Journal of Applied Polymer Science 80 (2001) 1825-1834.
- [31] E. Agel, J. Bouet, J.F. Fauvarque, Characterization and use of anionic membranes for alkaline fuel cells, Journal of Power Sources 101 (2001) 267-274.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6de48f54-12c7-4ebd-ac03-65de0fd422c4