PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Environmental Potential Impact on Biofuel Production from Thermal Cracking of Palm Shell Using Life Cycle Assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the environmental potential impact of the palm shell biofuel production process using life cycle assessment (LCA) through gate to gate approach. The environmental impact of each scenario was assessed using ISO 14040 (2006), which includes goal and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA) and interpretation. The simapro v.9 software with ecoinvent 3.5 database was utilized to assess the environmental effect. The impact analysis method used is Impact 2002+. Functional units were used to show environmental references in damage assessment and characterization, such as energy use and global warming potential. The results show that the environmental impact evaluation obtained through LCA for the entire biofuel production process stated that the thermal cracking stage resulted in the highest global warming impact, compared to other processes, which was 118.374 kg CO2 eq. For the categories of human health, ecosystem quality, and climate change, each has a value of 0.0001 DALY; 15.708 PDF•m2•yr; and 335.233 kg CO2 eq where this value is the total damage assessment of the entire biofuel production process. From the results of the analysis by utilizing the networking graph on the simapro application, it can be seen that the environmental hotspot of the thermal cracking process of biofuel production is due to the use of electricity from the State Electricity Company (PLN) and the release of chemical substances from the process. To improve the environmental performance of biofuel production process, additional development steps are required to increase biofuel yield, purification efficiency of biofuel to obtain pure liquid fuel, and the use of renewable energy sources to generate electricity. Additionally, more particular data would be required for a more precise LCA study result.
Słowa kluczowe
Rocznik
Strony
61--67
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Department of Renewable Energy Engineering, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar Palembang, 30139, Indonesia
  • Department of Renewable Energy Engineering, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar Palembang, 30139, Indonesia
autor
  • Department of Renewable Energy Engineering, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar Palembang, 30139, Indonesia
  • Department of Renewable Energy Engineering, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar Palembang, 30139, Indonesia
autor
  • Department of Energy Engineering, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar Palembang, 30139, Indonesia
Bibliografia
  • 1. Bow, Y., Rusdianasari, R., Yunsari, S. 2020. CPO based biodiesel production using induction heating assisted. Oil Palm Research and Review, 1(1), 1–6.
  • 2. Chan, Y.H., Tan, R.R., Yusup, S., Quitain, A.T., Loh, S.K., Uemura, Y. 2018. Life cycle assessment (LCA) of production and fractionation of bio-oil derived from palm kernel shell: a gate to gate case study. Process Integration and Optimization for Sustainability, 2(4), 343–351.
  • 3. Dang, Q., Yu, C., Luo, Z. 2014. Environmental life cycle assessment of bio-fuel production via fast pyrolysis of corn stover and hydroprocessing. Fuel, 131, 36–42.
  • 4. Darojat, K., Hadi, W., Rahayu, D.E. 2019. Life Cycle Assessment (LCA) utilization of oil palm empty fruit bunches as bioenergy. In AIP Conference Proceedings. AIP Publishing LLC, 2194(1), 020019.
  • 5. Fiksel, J. 2009. Design for environment: a guide to sustainable product development. McGraw-Hill Education.
  • 6. Finkbeiner, M. 2013. From the 40s to the 70s – the future of LCA in the ISO 14000 family. The International Journal of Life Cycle Assessment, 18(1), 1–4.
  • 7. Guo, F., Wang, X., Yang, X. 2017. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle. Energy Conversion and Management, 132, 272–280.
  • 8. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R. 2003. IMPACT 2002+: a new life cycle impact assessment methodology. The international journal of life cycle assessment, 8(6), 324–330.
  • 9. Lau, S.Y., Phuan, S.L., Danquah, M.K., Acquah, C. 2019. Sustainable palm oil refining using pelletized and surface-modified oil palm boiler ash (OPBA) biosorbent. Journal of Cleaner Production, 230, 527–535.
  • 10. Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., Verbeeck, G. 2018. Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133, 228–236.
  • 11. Rattanaporn, K.; Roddecha, S.; Sriariyanun, M.; Cheenkachorn, K. 2017. Improving Saccharification of Oil Palm Shell by Acetic Acid Pre-treatment for Biofuel Production. Energy Procedia, 141, 146–149. DOI: 10.1016/j.egypro.2017.11.027
  • 12. Rusdianasari, R., Kalsum, L., Masnila, N., Utarina, L., Wulandari, D. 2022. Characteristics of Palm Oil Solid Waste and Its Potency for Bio-Oil Raw Material. In 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021) Atlantis Press, 415–420.
  • 13. Sabarman, J.S., Legowo, E.H., Widiputri, D.I., Siregar, A.R. 2019. Bioavtur Synthesis from Palm Fatty Acid Distillate Through Hydrotreating and Hydrocracking Processes. Indonesian Journal of Energy, 2(2), 99–110. DOI: 10.33116/ije.v2i2.40
  • 14. Suganthi, L. 2019. Examining the relationship between corporate social responsibility, performance, employees’ pro-environmental behavior at work with green practices as mediator. Journal of cleaner production, 232, 739–750.
  • 15. Togarcheti, S.C., Mk, M., Chauhan, V.S., Mukherji, S., Ravi, S., Mudliar, S.N. 2017. Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source. Resour Conserv Recycl, 122, 286–294.
  • 16. Utarina, L., Rusdianasari, R., Kalsum, L. 2022. Characterization of Palm Shell-Derived Bio-Oil Through Pyrolysis. Journal of Applied Agricultural Science and Technology, 6(2), 139–148.
  • 17. Volta, Y.A., Yusi, S. 2021. Life Cycle Assessment (LCA) in Pulp & Paper Mills: Comparison Between MFO With Biomass in Lime Kiln. In 4th Forum in Research, Science, and Technology (FIRST-T1-T2-2020) Atlantis Press, 323–327.
  • 18. Wang, Y., Wang, J., Zhang, X., Grushecky, S. 2020. Environmental and economic assessments and uncertainties of multiple lignocellulosic biomass utilization for bioenergy products: case studies. Energies, 13(23), 6277.
  • 19. Wiloso, E.I., Nazir, N., Hanafi, J., Siregar, K., Harsono, S.S., Setiawan, A.A.R., Fang, K. 2019. Life cycle assessment research and application in Indonesia. The International Journal of Life Cycle Assessment, 24(3), 386–396.
  • 20. Wulandari, D., Rusdianasari, R., Yerizam, M. 2022. Life Cycle Assessment of Production Bio-oil from Thermal Cracking Empty Fruit Bunch (EFB). AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment), 6(3), 34–39.
  • 21. Wulandari, D., Rusdianasari, Yerizam, M. 2022. Characterization Biofuel from Empty Fruit Bunch through Thermal Cracking. International Journal of Research in Vocational Studies (IJRVOCAS), 2(2), 15–22. DOI: 10.53893/ijrvocas.v2i2.104
  • 22. Xu, L., Jiang, L., Zhang, H., Fang, Z., Smith, R.L. 2020. Introduction to pyrolysis as a thermo-chemical conversion technology. In Production of Biofuels and Chemicals with Pyrolysis. Springer, Singapore, 3–30.
  • 23. Yunsari, S., Husaini, A. 2019. CPO Based Biodiesel Production using Microwaves Assisted Method. In Journal of Physics: Conference Series (Vol. 1167, No. 1, p. 012036). IOP Publishing.
  • 24. Zhou H., Qian Y., Kraslawski A., Yang Q., Yang S. 2017. Life-cycle assessment of alternative liquid fuels production in China. Energy, 139, 507–522.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6de3ea86-5aea-4074-9532-111d9adc971e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.