Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The internal diameter of a tube in a ‘church window’ condenser was estimated using an entropy generation minimization approach. The adopted model took into account the entropy generation due to heat transfer and flow resistance from the cooling-water side. Calculations were performed considering two equations for the flow resistance coefficient for four different roughness values of a condenser tube. Following the analysis, the internal diameter of the tube was obtained in the range of 17.5 mm to 20 mm (the current internal diameter of the condenser tube is 22 mm). The calculated diameter depends on and is positively related to the roughness assumed in the model.
Czasopismo
Rocznik
Tom
Strony
49--59
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
- Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
- Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
Bibliografia
- [1] MCCLINTOCK F. A.: The design of heat exchangers for minimum irreversibility. ASME Paper 51-A-108, 1951.
- [2] PRIGOGINE I.: Introduction to Thermodynamics of Irreversible Processes, 3rd Edn., Wiley, New York 1967, 76–77.
- [3] BEJAN A.: The concept of irreversibility in heat exchanger design: counter flow heat exchanger for gas-gas applications. J. Heat Transfer 99(1977), 374–380.
- [4] BEJAN A.: Entropy generation minimization: The new thermodynamics of finite size devices and finite time processes. J. Appl. Phys. 79(1996), 1191–1218.
- [5] BEJAN A.: Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. CRC Press LLC, 1996.
- [6] ORDONEZ J., BEJAN A.: Entropy generation minimization in parallel-plates counterfow heat exchangers. Int. J. Energ. Res. 24(2000), 843–864.
- [7] OGULATA R.T., DOBA F., YILMAZ T.: Irreversibility analysis of cross flow heat exchangers. Energ. Convers. Manage. 41(2000), 1585–1599.
- [8] SAHITI N., KRASNIQI F., FEJZULLAHU XH., BUNJAKU J., MURIQI A.: Entropy generation minimization of a double-pipe pin fin heat exchange. Appl. Therm. Eng. 28(2008), 2337–2344.
- [9] MISHRA M., DAS P.K., SARANGI S.: Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm. Appl. Therm. Eng. 29(2009) 2983–2989.
- [10] GUO, J., CHENG, L., XU, M.: Multi-Objective Optimization of Heat Exchanger Design by Entropy Generation Minimization. J. Heat Trans.-T. ASME 132(2010), 8, 081801.
- [11] SZARGUT J.: Problems of thermodynamics optimization. Arch. Thermodyn. 19(1998), 3/4, 85–94.
- [12] OGISO K.: Duality of heat exchanger performance in balanced counter-flow systems. J. Heat Trans.-T. ASME 125(2003), 3, 530–532.
- [13] XU Z., YANG S., CHEN Z.: A modified entropy generation number for heat exchangers. J. Therm. Sci. 5(1996), 4, 257–263.
- [14] XIONG DAXI LI ZHIXIN GUO ZENGYUAN: On effectiveness and entropy generation in heat exchange. J. Therm. Sci. 5(1996), 4.
- [15] HESSELGREAVES J.E.: Rationalization of second law analysis of heat exchangers. Int. J. Heat Mass Tran. 43(2000, 4189–4204.
- [16] GUO J., XU M., CHENG L.: The application of field synergy number in shell-andtube heat exchanger optimization design. Appl. Energ. 86(2009), 2079–2087.
- [17] SHAH R.K., SKIEPKO T.: Entropy generation extrema and their relationship with heat exchanger effectiveness–number of transfer unit behavior for complex flow arrangements. J. Heat Trans.-T. ASME 126(2004), 6, 994–1002.
- [18] MOHAMED H.A.: Entropy generation in counter flow heat exchangers. J. Heat Trans.-T. ASME 128(2006), 87–92.
- [19] KOLENDA Z.: Analysis of the possibility to reduce the imperfections of the thermodynamic processes of the supply of electricity, heat and cooling in the context of sustainable development of the country. Exergy analysis and entropy generation minimization method. (A. Ziębik, J. Szargut, W. Stanek, Eds.). Wyd. PAN, 2006 (in Polish).
- [20] YILMAZ M., SARA O. N., KARSLI S.: Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int. J. 1(2001), 4, 278–294.
- [21] ZENG H., MENG J., LI Z.: Numerical study of a power plant condenser tube arrangement. Appl. Therm. Eng. 40(2012), 294–303.
- [22] RUSOWICZ A.: Issues concerning mathematical modeling of power condensers. Warsaw University of Technology, Warsaw 2013 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6de35394-90ef-4f14-9951-fb62ffc9934a