PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic modeling of energy need for heating and thermal comfort dependence on building envelope characteristics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis based on dynamic modeling of the parameters changing effect of the building envelope on the thermal state has been carried out. The influence on the building energy need for heating of the mass building thermal inertia features for various thermal resistances and the different glazing area under the condition of constant room air temperature was investigated. The influence of changes in environmental parameters during the heating period on the parameters of thermal comfort and on average radiant and operating temperature for various variants of building envelope, glazing area of the windows and massiveness of envelope has been also investigated.
Rocznik
Strony
10--19
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
autor
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
autor
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
Bibliografia
  • [1] EN 13790:2008, 2008, Energy performance of buildings - Calculation of energy use for space heating and cooling, CEN: European Committee for Standardization, 53 р.
  • [2] EN 15217:2007 2007, Energy performance of buildings - Methods for expressing energy performance and for energy certification of buildings, CEN: European Committee for Standardization, 31 р.
  • [3] EN 15603:2008, 2008, Energy performance of buildings - overall energy use and definition of energy ratings, CEN: European Committee for Standardization, 43 р.
  • [4] Ghita S.A., Catalina, T., 2015, Energy efficiency versus indoor environmental quality in different Romanian countryside schools, Energy and Buildings, 92, pp. 140-154. doi:10.1016/j.enbuild.2015.01.049.
  • [5] Allab Y., Pellegrino M., Guo X., Nefzaoui E., Kindinis A., 2017, Energy and comfort assessment in educational building: Case study in a French university campus, Energy and Buildings, 143, pp. 202-219. doi:10.1016/j.enbuild.2016.11.028.
  • [6] Gou S., Nik V.M., Scartezzini J.-L., Zhao Q. & Li Z., 2018, Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand, Energy and Buildings, 169, pp. 484-506. doi:10.1016/j.enbuild.2017.09.095.
  • [7] Zhao Z., Houchati M., & Beitelmal A., 2017, An Energy Efficiency Assessment of the Thermal Comfort in an Office building, Energy Procedia, 134, pp. 885-893. doi:10.1016/j.egypro.2017.09.550.
  • [8] Fareniuk H.H., Filonenko O.I., Tymofieiev M.V, 2017, Enerhoefektyvnist hromadskykh budynkiv z vrakhuvanniam erhonomiky teplovoho seredovyshcha, Komunalne hospodarstvo mist. Seriia: Tekhnichni nauky ta arkhitektura, 135, pp. 119-124.
  • [9] Deshko V.I., Buyak N.A., 2017, Heating building need and exergy thermal comfort model, Industrial Heat Engineering, 39, 5, pp. 103-107.
  • [10] DSTU B EN 152515: 2011, 2012, Rozrakhunkovi parametry mikroklimatu prymishchen dlia proektuvannia ta otsinky enerhetychnykh kharakterystyk budivel po vidnoshenniu do yakosti povitria, teplovoho komfortu,osvitlennia ta akustyky budivel. [Chynnyi vid 2013-07-01], Kyiv, Minrehion Ukrainy, 71 s.
  • [11] DSTU B EN 15261: 2012, 2012, Rozrakhunok parametriv mikroklimatu. [Chynnyi vid 2013-01-01], Kyiv, Minrehion Ukrainy, 81 s.
  • [12] DSTU B EN ISO 7730: 2011, 2012, Erhonomika teplovoho seredovyshcha. Analitychne vyznachennia ta interpretatsiia teplovoho komfortu na osnovi rozrakhunkiv pokaznykiv PMV I PPD I kryteriiv lokalnoho teplovoho komfortu, [Chynnyi vid 2013-01-01]. Kyiv, Minrehion Ukrainy, 74 s.
  • [13] Esmaeilzadeh A., Zakerzadeh M.R., & Yousefi Koma A., 2018, The Comparison of Some Advanced Control Methods for Energy Optimization and Comfort Management in Buildings, Sustainable Cities and Society, 43, pp. 601-623. doi:10.1016/j.scs.2018.08.038.
  • [14] Rupp, R.F., Vásquez, N.G., & Lamberts, R., 2015, A review of human thermal comfort in the built environment. Energy and Buildings,105, pp. 178-205. doi:10.1016/j.enbuild.2015.07.047.
  • [15] Fanger P.O., 1970, Thermal comfort: analysis and applications in environmental engineering, New York, McGraw-Hill Inc.
  • [16] ASHRAE 55-2017, 2017, Thermal environmental conditions for human occupancy, Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
  • [17] Humphreys M., Nicol F., Roaf S., 2015, Adaptive Thermal Comfort, Foundations and Analysis, Routledge, Earthscan, London.
  • [18] ASHRAE 554 2004., 2004, Thermal Environmental Conditions for Human Occupancy.
  • [19] Haddad S., Osmond P., King S., 2019, Application of adaptive thermal comfort methods for Iranian schoolchildren, Building Research and Information, 47, 2, pp. 173-189.
  • [20] Hom B. Rijal, Michael A. Humphreys & J. Fergus Nicol, 2017, Towards an adaptive model for thermal comfort in Japanese offices, Building Research & Information, 45,7, pp. 717-729. doi: 10.1080/09613218.2017.1288450.
  • [21] Song Y., Sun Y., Luo S., Tian Z., Hou J., Kim J., Dear R., 2018, Residential adaptive comfort in a humid continental climate - Tianjin China, Energy and Buildings,170, pp. 115-121. doi: 10.1016/j.enbuild.2018.03.083.
  • [22] Attia, S., & Carlucci, S., 2015, Impact of different thermal comfort models on zero energy residential buildings in hot climate, Energy and Buildings,102, pp. 117-128. doi: 10.1016/j.enbuild.2015.05.017.
  • [23] Albatayneh A., Alterman D., Page A., & Moghtaderi B., 2017, Thermal Assessment of Buildings Based on Occupants Behavior and the Adaptive Thermal Comfort Approach, Energy Procedia,115, pp. 265-271. doi: 10.1016/j.egypro.2017.05.024.
  • [24] Prek M., 2004, Exergy analysis of thermal comfort, International Journal of Exergy, 1, pp. 303-315, part. 2.
  • [25] Prek M., 2006, Thermodynamical analysis of human thermal comfort, Energy, 31, 5, pp. 732-43.
  • [26] Prek M., Butala V., 2010, Principles of exergy analysis of human heat and mass exchange with the indoor environment, Int J Heat Mass Transf, 53, 25-26:5806-14.
  • [27] Shukuya M., Saito M., Isawa K., Iwamatsu T., Asada H., 2009, Human‐body Exergy Balance and Thermal Comfort. Draft Report for IEA/ECBCS/Annex49.
  • [28] Shukuya M., 2013, Exergy: Theory and Applications in the Built Environment, Berlin, Springer, 374 p.
  • [29] Shukuya, M, 2018, Exergetic Aspect of Human Thermal Comfort and Adaptation. Sustainable Houses and Living in the Hot‐Humid Climates of Asia, Springer, Singapore, pp. 123-129.
  • [30] Juusela M.A., Shukuya M., 2014, Human body exergy consumption and thermal comfort of an office worker in typical and extreme weather conditions in Finland, Energy and Buildings, 76, pp. 249-257.
  • [31] Schweiker M., et al., 2017, Challenging the assumptions for thermal sensation scales, Building Research & Information, 45,5, pp. 572-589.
  • [32] Isawa, K., 2015, Human body exergy balance: numerical analysis of an indoor thermal environment of a passive wooden room in summer, Buildings, 5, pp. 1055-1069.
  • [33] Buyak N.A., Deshko V.I., Sukhodub I.O., 2017, Buildings energy use and human thermal comfort according to energy and exergy approach, Energy and buildings, 146, pp. 172-181.
  • [34] Deshko V.I., Buyak N.A., Sukhodub I.O., 2018, Influence of Subjective and Objective Thermal Comfort Parameters on Building Primary Fuel Energy Consumption, International Journal of Engineering & Technology, 7, 4.3, pp. 383-386.
  • [35] Energy Plus Energy Simulation Software. http://apps1.eere.ener-gy.gov/buildings/energyplus.
  • [36] International Weather for Energy Calculations: https://energy-plus.net/weather-location/europe_wmo_region_6/UKR.
Uwagi
EN
1. The research was supported by the Ministry of Education and Science of Ukraine under the project" Engineering aspects of the energy management system operation for housing and public facilities" (state registration number 0119U100670).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6de0148f-d255-4123-abd2-0dc11d8f4a6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.