PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Trochoidal Tool Path Generation Method on the Milling Process Efficiency

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a comparison of three trochoidal paths: written by G-Code, generated using the overlays from the machine level, and generated using the CAD/CAM environment. The parameters determining the effectiveness of the process were: maximum achievable feed speed, surface roughness and waviness, cutting forces and cutting temperature when milling NC6 steel (50HRC) using a 10 mm cutter dimeter. The main measurement results include: an increase in the maximum feed speed value by almost 35% when using the A and C paths compared to the type B path and nearly a double increase in surface roughness when using the path generated using the CAD/CAM environment compared to the B path. The most important conclusions was that it is not always possible to machine with the recommended parameters by the tool manufacturer, especially when machining narrow grooves. It was proven that that the use of paths with the displacement described by arcs and straight lines as a trochoidal step over reduces the possibility of milling at high feed rate.
Twórcy
  • Wroclaw University of Technology and Science, Faculty of Mechanical Engineering, Łukasiewicza 5, 50-370 Wrocław, Poland
Bibliografia
  • 1. Bettine F., Ameddah H. and Manna R. A Neural Network Approach for Predicting Kinematic Errors Solutions for Trochoidal Machining in the Matsuura MX-330 Five-Axis Machine. FME Transactions, 46, 2018, 453–462.
  • 2. Deng Q., Rong M., Zezhong C.C. and Zhiyong C. A new approach to generating trochoidal tool paths for effective corner machining. The International Journal of Advanced Manufacturing Technology, 95, 2018, 3001–3012.
  • 3. Heidenhain. User’s manual cycle programming iTNC 530, 12, 2008.
  • 4. Ibaraki S., Yamaji I. and Matsubara A. On the removal of critical cutting regions by trochoidal grooving. Precision Engineering, 34(3), 2010, 467–473.
  • 5. Manuel M. and Ciro A.R. Influence of tool path strategy on the cycle time of high-speed milling. Computer-Aided Design, 35, 2003, 395–401.
  • 6. Nam-Seok O., Wan-Sik W., and Choon-Man L. A Study on the Machining Characteristics and Energy Efficiency of Ti-6Al-4V in Laser-Assisted Trochoidal Milling. International Journal of Precision Engineering and Manufacturinggreen Technology, 5(1), 2018, 37–45.
  • 7. Novak-Marcincin J. Problems of optimal cutting strategy application for cnc milling technology. TMT, 11, 2007, 5–9.
  • 8. Otkur M. and Lazoglu I. Trochoidal milling. International Journal of Machine Tools and Manufacture, 47(9), 2007, 1324–1332.
  • 9. Patil P., Polishetty A., Goldberg M., Littlefair G. and Nomani J. Slot Machining of Ti6Al4V with Trochoidal Milling Technique. Journal of Machine Engineering, 14(4), 2014, 42–54.
  • 10.Pleta A. and Mears L. Cutting Force Investigation of Trochoidal Milling in Nickel-Based Superalloy. Procedia Manufacturing, 5, 2016, 1348–1356.
  • 11.Pleta A., Niaki F. A. and Mears L. A Comparative Study on the Cutting Force Coefficient Identification between Trochoidal and Slot Milling. Procedia Manufacturing, 26, 2018, 570–579.
  • 12.Szaloki I., Csuka S. and Sipos S. New Test Results in Cycloid-Forming Trochoidal Milling. Acta Polytechnica Hungarica, 11, 2014, 215–228.
  • 13.Szaloki I., Csuka S., Sipos S. and Csesznok S. Can trochoidal milling be ideal? International Manufacturing Conference, 12, 2012, 14–16.
  • 14.Waszczuk K., Karolczak P., Wiśniewska M. and Kowalski M. Influence of the path type on selected technological effects in the trochoidal milling. Advances in Science and Technology Research Journal, 11(1), 2017, 147–153.
  • 15.Waszczuk K., Skowronek H., Karolczak P., Kowalski M. and Kołodziej M. Influence of the Trochoidal Tool Path on Quality Surface of Groove Walls. Advances in Science and Technology Research Journal, 13 (3), 2019, 38–42.
  • 16.Yunching H. and James H.O. NC Milling Error Assessment and Tool PathCorrection. Mechanical Engineering, 7, 1994, 287–294.
  • 17.Zagórski I., Kulisz M., Kłonica M. and Matuszak J. Trochoidal Milling and Neural Networks Simulation of Magnesium Alloys. Materials, 12(13), 2019, 2070.
  • 18.Zaleski K., Matuszak J. and Zyśko A. Highly efficient milling on the example of selected machining strategies. Advances in Science and Technology Research Journal, 14(1), 2020, 167–177.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ddf423b-d259-435e-91ca-7bee5bdaaf98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.