PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on applicability of two modal identification techniques in irrelevant cases

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Study on applicability of two modal identification techniques in irrelevant cases is made in this paper. The following techniques are considered: peak picking based on correlation analysis (PP-CA), dedicated for ambient vibrations and eigensystem realization algorithm (ERA), formulated for free-decay vibrations investigation. Irrelevant cases are found when analyzed signals are different than recommended to a given technique. The study is conducted on examples of two real structures: masonry tower and steel railway bridge. Both cases are diverse in age, material, excitation and vibrations energy. The signals measured on the tower are suitable for the PP-CA technique (ambient vibrations), while the signals measured on the bridge are suitable for the ERA (free-decay vibrations). However, both methods have been applied to both systems. Natural frequencies, mode shapes and damping ratios are identified and the effectiveness of the irrelevant technique is assessed in relation to the results obtained by the relevant method in each case.
Rocznik
Strony
168--178
Opis fizyczny
Bibliogr. 30 poz., fot., wykr.
Twórcy
  • Department of Structural Mechanics, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80‑233 Gdańsk, Poland
  • Department of Bridge Structures and Railway Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80‑233 Gdańsk, Poland
Bibliografia
  • [1] Maia NMM, Silva JMM. Theoretical and experimental modal analysis. Baldock: Research Studies Press Ltd.; 1997.
  • [2] Zhang L. An overview of major developments and issues in modal identification. In: Proceedings of 22nd international modal analysis conference (IMAC), Detroit; 2004.
  • [3] Bendat J, Piersol A. Engineering applications of correlation and spectral analysis. New York: Wiley; 1980.
  • [4] Zwolski J, Bień J. Modal analysis of bridge structures by means of forced vibration tests. J Civ Eng Manag. 2011;17(4):590–9.
  • [5] Gazzani V, Poiani M, Clementi F, Milani G, Lenci S. Modal parameters identification with environmental tests and advanced numerical analyses for masonry bell towers: a meaningful case study. Procedia Struct Integr. 2018;11:306–13.
  • [6] Brownjohn JMW. Ambient vibration studies for system identification of tall buildings. Earthq Eng Struct D. 2003;25:1–25.
  • [7] Chen G, Omenzetter P, Beskhyroun S. Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations. Eng Struct. 2017;151:839–60.
  • [8] Bień J, Kużawa M, Kamiński T. Validation of numerical models of concrete box bridges based on load test results. Arch Civ Mech Eng. 2015;15:1046–60.
  • [9] Nayeri RD, Tasbihgoo F, Wahbeh M, Caffrey JP, Masri SF, Conte JP, Elgamal A. Study of time-domain techniques for modal parameter identification of a long suspension bridge with dense sensor arrays. J Eng Mech. 2009;135:669–83.
  • [10] Szafrański M. Dynamics of the small-span railway bridge under moving loads. In: MATEC Web conference 2019, vol. 262, no 10014, pp 1–8.
  • [11] Poprawa G, Salamak M, Pradelok S, Łaziński P. Operational modal analysis in model updating of a truss railway bridge. In: Proceedings of 7th international operational modal analysis conference (IOMAC), Ingolstadt; 2017. pp. 9–18.
  • [12] Stutz LT, Rangel ICSS, Rangel LS, Correa RAP, Knupp DC. Structural damage identification built on a response surface model and the flexibility matrix. J Sound Vib. 2018;434:284–97.
  • [13] Tomaszewska A. Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature. Comput Struct. 2010;88:154–64.
  • [14] Juang JN, Pappa RS. An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dyn. 1985;8:620–7.
  • [15] Hollkamp JJ, Gordon RW. Modal test experiences with a jet engine fan model. J Sound Vib. 2001;248:151–65.
  • [16] Rusinski E, Dragan S, Moczko P, Pietrusiak D. Implementation of experimental method of determining modal characteristics of surface mining machinery in the modernization of the excavating unit. Arch Civ Mech Eng. 2012;12:471–6.
  • [17] Bernagozzi G, Mukhopadhyay S, Betti R, Landi L, Diotallevi PP. Output-only damage detection in buildings using proportional modal flexibility-based deflections in unknown mass scenarios. Eng Struct. 2018;167:549–66.
  • [18] Alvin KF, Robertson AN, Reich GW, Park KC. Structural system identification: from reality to models. Comput Struct. 2003;81:1149–76.
  • [19] Juang JN. Applied system identification. New Jersey: Prentice-Hall PTR; 1994.
  • [20] Bendat J. Statistical errors in measurement of coherence functions and input/output quantities. J Sound Vib. 1978;59:405–21.
  • [21] Taylor JR. An Introduction to error analysis: the study of uncertainties in physical measurements. 2nd ed. Sausalito: University Science Books; 1997.
  • [22] Tomaszewska A, Szymczak C. Identification of the Vistula Mounting tower model using measured modal data. Eng Struct. 2012;42:342–8.
  • [23] Bull JW. Computational modelling of masonry, brickwork and blockwork structures. Stirling: Saxe-Coburg Publications; 2001.
  • [24] Bayraktar A, Türker T, Sevim B, Altunisik AC, Yildirim F. Modal parameter identification of Hagia Sophia bell-tower via ambitne vibration test. J Nondestruct Eval. 2009;28:37–47.
  • [25] Bru D, Ivorra S, Betti M, Adam JM, Bartoli G. Parametric dynamic interaction assessment between bells and supporting slender masonry tower. Mech Syst Signal Process. 2019;129:235–49.
  • [26] Vincenzi L, Bassoli E, Ponsi F, Castagnetti C, Mancini F. Dynamic monitoring and evaluation of bell ringing effects for the structural assessment of a masonry bell tower. J Civ Struct Health Monit. 2019;9:439–58.
  • [27] Zanotti Fragonara L, Boscato G, Ceravolo R, Russo S, Gentile S, Pecorelli ML, Quattrone A. Dynamic investigation on theMirandola bell tower in post-earthquake scenarios. Bull Earthq Eng. 2017;15:313–37.
  • [28] Pandey AK, Biswas M, Samman MM. Damage detection from changes in curvature mode shapes. J Sound Vib. 1991;145:321–32.
  • [29] Clementi F, Pierdicca A, Formisano A, Catinari F, Lenci S. Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: the case study of the Podesta palace in Montelupone (Italy). J Civ Struct Health Monit. 2017;7:703–17.
  • [30] Szafrański M. Dynamic analysis of the railway bridge span under moving loads. Roads and Bridges (Drogi i Mosty). 2018;17:299–316.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ddccfd6-bcad-4c69-a717-625bc7ee3bc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.