PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grafting of oxidized carboxymethyl cellulose with hydrogen peroxide in presence of Cu(II) to chitosan and biological elucidation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The chemical interaction of chitosan (CS) is performed in the presence of sodium carbox-ymethyl cellulose (CMC) and/or oxidized CMC. The latter is obtained by the action of H2O2/CuSO4 to generate carbonyl and carboxyl groups which were increased with CuSO4 concentration. The characterization of these new materials is made by FTIR, TGA, XRD and SEM. Examination of the hemolytic potential showed that the hydrogels were non hemolytic in nature. The hydrogels were non-toxic and blood-compatible. The antibacterial and antioxidant activities of samples were investigated.
Twórcy
autor
  • Laboratory Multiphase Polymeric Materials (LMPMP), Faculty of Technology, Setif-1 University, Setif 19000, Algeria
autor
  • Laboratory Multiphase Polymeric Materials (LMPMP), Faculty of Technology, Setif-1 University, Setif 19000, Algeria
autor
  • Laboratory Multiphase Polymeric Materials (LMPMP), Faculty of Technology, Setif-1 University, Setif 19000, Algeria
autor
  • Laboratory Multiphase Polymeric Materials (LMPMP), Faculty of Technology, Setif-1 University, Setif 19000, Algeria
autor
  • Laboratory Multiphase Polymeric Materials (LMPMP), Faculty of Technology, Setif-1 University, Setif 19000, Algeria
Bibliografia
  • [1] Biswal DR, Singh RP. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 2004;57(4):379–87.
  • [2] Fan L, Peng M, Zhou X, Wu H, Hu J, Xie W, et al. Modification of carboxymethyl cellulose grafted with collagen peptide and its antioxidant activity. Carbohydr Polym 2014;112:32–8.
  • [3] Fan L, Zhou X, Wu P, Xie W, Zheng H, Tan W, et al. Preparation of carboxymethyl cellulose sulfates and its application as anticoagulant and wound dressing. Int J Biol Macromol 2014;66:245–53.
  • [4] Taubner T, Synytsya A, Čopíková J. Preparation of amidated derivatives of carboxymethylcellulose. Int J Biol Macromol 2015;72:11–8.
  • [5] Yang XH, Zhu WL. Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose 2007;14(5): 409–17.
  • [6] El-Hag Ali A, Abd El-Rehim HA, Kamal H, Hegazy DESA. Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as site specific delivery system. J Macromol Sci: Part A: Pure Appl Chem 2008;45(8):628–34.
  • [7] Ng SF, Jumaat N. Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. Eur J Pharm Sci 2014;5:173–9.
  • [8] Li H, Wu B, Mu C, Lin W. Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydr Polym 2011;84(3):881–6.
  • [9] Anjali T. Modification of carboxymethyl cellulose through oxidation. Carbohydr Polym 2012;87(1):457–60.
  • [10] Ghasemzadeh H, Mahboubi A, Karimi K, Hassani S. Full polysaccharide chitosan–CMC membrane and silver nanocomposite: synthesis, characterization, and antibacterial behaviors. Polym Adv Technol 2016.
  • [11] Hassan RM, Abdel-Kader DA, Ahmed SM, Fawzy A, Zaafarany IA, Asghar BH, et al. Acid-catalyzed oxidation of carboxymethyl cellulose. Kinetics and mechanism of permanganate oxidation of carboxymethyl cellulose in acid perchlorate solutions. Catal Commun 2009;11(3):184–90.
  • [12] Sudur F, Orbey N. Properties of hydrogen peroxide encapsulated in silica hydrogels and xerogels. Ind Eng Chem Res 2015;54(44):11251–7.
  • [13] Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials 2003;24(13):2339–49.
  • [14] Lv J, Zhou Q, Liu G, Gao D, Wang C. Preparation and properties of polyester fabrics grafted with O-carboxymethyl chitosan. Carbohydr Polym 2014;113:344–52.
  • [15] Chen XG, Liu CS, Liu CG, Meng XH, Lee CM, Park HJ. Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochem Eng J 2006;27(3):269–74.
  • [16] Zhang H, Neau SH. In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation. Biomaterials 2001;22 (12):1653–8.
  • [17] Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 2001;22(3):261–8.
  • [18] Balan V, Verestiuc L. Strategies to improve chitosan hemocompatibility: a review. Eur Polym J 2014;53:171–88.
  • [19] Chen X, Liu J, Feng Z, Shao Z. Macroporous chitosan/ carboxymethylcellulose blend membranes and their application for lysozyme adsorption. J Appl Polym Sci 2005;96(4):1267–74.
  • [20] Zhao Q, Qian J, An Q, Gao C, Gui Z, Jin H. Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. J Membr Sci 2009;333(1):68–78.
  • [21] Dhar N, Akhlaghi SP, Tam KC. Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydr Polym 2012;87(1):101–9.
  • [22] Zhang YR, Wang XL, Zhao GM, Wang YZ. Preparation and properties of oxidized starch with high degree of oxidation. Carbohydr Polym 2012;87(4):2554–62.
  • [23] Kumar V, Yang T. Analysis of carboxyl content in oxidized celluloses by solid-state 13C CP/MAS NMR spectroscopy. Int J Pharm 1999;184(2):219–26.
  • [24] Fan L, Sun Y, Xie W, Zheng H, Liu S. Oxidized pectin cross-linked carboxymethyl chitosan: a new class of hydrogels. J Biomater Sci Polym Ed 2012;23(16):2119–32.
  • [25] Yamaguchi T, Takamura H, Matoba T, Terao J. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem 1998;62(6):1201–4.
  • [26] Lu Y, Kong QM, Jing R, Hu X, Zhu PX. Solid state oxidation of polyvinyl alcohol by hydrogen peroxide-Cu (II). Polym Degrad Stab 2013;98(6):1103–9.
  • [27] Millero FJ, Sharma VK, Karn B. The rate of reduction of copper (II) with hydrogen peroxide in seawater. Mar Chem 1991;36(1):71–83.
  • [28] Jones CW, Clark JH, Braithwaite MJ. Applications of hydrogen peroxide and derivatives. 1st edition. Cambridge: Royal Society of Chemistry; 1999.
  • [29] Chetouani A, Elkolli M, Bounakhel M, Benachour D. physicochemical characterization of gelatin-CMC composite edibles films from polyion-complex hydrogels. J Chil Chem Soc 2014;59(1):2279–83.
  • [30] Wang J, Somasundaran P. Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. J Colloid Interface Sci 2005;291(1):75–83.
  • [31] Al-Sagheer FA, Ibrahim EI, Khalil KD. Crystallinity, antimicrobial activity and dyeing properties of chitosan-g- poly (N-acryloyl morpholine) copolymer. Eur Polym J 2014;58:164–72.
  • [32] Prabhu SM, Meenakshi S. Enriched fluoride sorption using chitosan supported mixed metal oxides beads: synthesis, characterization and mechanism. J Water Process Eng 2014;2:96–104.
  • [33] Ibrahim M, Mahmoud AA, Osman O, Refaat A, El-Sayed ESM. Molecular spectroscopic analysis of nano-chitosan blend as biosensor. Spectrochim Acta Part A: Mol Biomol Spectrosc 2010;77(4):802–6.
  • [34] Rangelova N, Aleksandrov L, Angelova T, Georgieva N, Müller R. Preparation and characterization of SiO2/CMC/Ag hybrids with antibacterial properties. Carbohydr Polym 2014;101:1166–75.
  • [35] Veerapur RS, Gudasi KB, Aminabhavi TM. Pervaporation dehydration of isopropanol using blend membranes of chitosan and hydroxypropyl cellulose. J Membr Sci 2007;304 (1):102–11.
  • [36] Islam MM, Masum SM, Rahman MM, Molla MA, Shaikh AA, Roy SK. Preparation of chitosan from shrimp shell and investigation of its properties. Int J Basic Appl Sci 2011;11 (1):116–30.
  • [37] Li SM, Jia N, Ma MG, Zhang Z, Liu QH, Sun RC. Cellulose– silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 2011;86(2):441–7.
  • [38] Li W, Sun B, Wu P. Study on hydrogen bonds of carboxymethyl cellulose sodium film with two-dimensional correlation infrared spectroscopy. Carbohydr Polym 2009;78(3):454–61.
  • [39] Shukla JS, Sharma GK. Graft copolymerization of methyl methacrylate onto wool initiated by ceric ammonium nitrate–thioglycolic acid redox couple in presence of air. IV. J Polym Sci A: Polym Chem 1987;25(2):595–605.
  • [40] Meng N, Zhang SQ, Zhou NL, Shen J. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride–heparin intercalated in graphite oxide. Nanotechnology 2010;21(18):185101.
  • [41] Lee DW, Powers K, Baney R. Physicochemical properties and blood compatibility of acylated chitosan nanoparticles. Carbohydr Polym 2004;58(4):371–7.
  • [42] Jumaa M, Furkert FH, Müller BW. A new lipid emulsion formulation with high antimicrobial efficacy using chitosan. Eur J Pharm Biopharm 2002;53(1):115–23.
  • [43] Richardson SW, Kolbe HJ, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 1999;178(2):231–43.
  • [44] Enayat S, Banerjee S. Comparative antioxidant activity of extracts from leaves, bark and catkins of Salix aegyptiaca sp. Food Chem 2009;116(1):23–8.
  • [45] Park PJ, Je JY, Kim SK. Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr Polym 2004;55(1):17–22.
  • [46] Yen MT, Yang JH, Mau JL. Antioxidant properties of chitosan from crab shells. Carbohydr Polym 2008;74(4):840–4.
  • [47] Paul S, Seema NP. In vitro antibacterial potential of chitosan and its derivatives on pathogenic enterobacteriaceae. Natl J Physiol Pharm Pharmacol 2015;5 (2):119–24.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6dd6f967-3586-48ef-afe6-565668afca5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.