Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Carbon fiber reinforced composite materials offer greater rigidity and strength than any other composites, but are much more expensive than e.g. glass fiber reinforced composite materials. Continuous fibers in polyester give the best properties. The fibers carry mechanical loads, the matrix transfers the loads to the fibers, is ductile and tough, protect the fibers from handling and environmental damage. The working temperature and the processing conditions of the composite depend on the matrix material. Polyesters are the most commonly used matrices because they offer good properties at relatively low cost. The strength of the composite increases along with the fiber-matrix ratio and the fiber orientation parallel to the load direction. The longer the fibers, the more effective the load transfer is. Increasing the thickness of the laminate leads to a reduction in the strength of the composite and the modulus of strength, since the likelihood of the presence of defects increases. The aim of this research is to analyze the change in the mechanical properties of the polymer composite. The polymer composite consists of carbon fibers and epoxy resin. The change in compressive strength in the longitudinal and transverse directions of the fiber orientation was evaluated. At the same time, the influence of the wet environment on the change of mechanical properties of the composite was evaluated.
Wydawca
Czasopismo
Rocznik
Tom
Strony
276--280
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
autor
- University of Žilina, Slovakia
autor
- University of Žilina, Slovakia
autor
- University of Žilina, Slovakia
Bibliografia
- 1.ASM Handbook. Composites, 21, 2001.
- 2.Bacon, R., Moses, C.T., 1986. High-Performance Polymers—Their Origin and Development. In: R.B. Seymour and G.S. Kirshenbaum (Ed.), Elseveir, p. 341.
- 3.Bacon, R., Tang, M.M., 1964. Carbonization of Cellulose Fibers I. Carbon, 2, p. 211.
- 4.D'Abate, G.D., Diefendorf, R.J. 1985. The Effect of Heat on the Structure and Properties of Mesophase PrecursorCarbon Fibers. Proc. of the 17th Biennial Conf. on Carbon, American Carbon Society, p. 390.
- 5.Donnet, J.B., Bansal, R.C., 1990. Carbon Fibers. 2nd ed., Marcel Dekker.
- 6.Goodman, S.H. 1986. Handbook of Thermoset Plastics, Noyes, pp. 133–182.
- 7.McKee, D.W., Memeault, V.J., 1981. Surface Properties of Carbon Fibers. Chemistry and Physics of Carbon, 17, Marcel Dekker, p. 1.
- 8.Selzer, R., Friedrich, K., 1996. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture. Composites Part A, p. 595-604.
- 9.Singer, L., 1994. Overview of Carbon Fiber Technology. Material Technology Center Newsletter, Southern Illinois Univ. at Carbondale.
- 10.Uhríčik, M., Dresslerová, Z., Palček, P., Oravcová, M., 2016. Temperature dependence of the internal friction of aluminium alloy EN AC 51200. 33rd Danubia Adria Symposium on Advances in Experimental Mechanics, pp. 154-155.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6dd508ba-52ac-4466-85e4-a999c28f2720