PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Electronic Speckle Pattern Interferometry for Evaluation of the Static Stiffness of a Complex Orthopedic Implant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a comparative analysis of the results of experimental and numerical evaluation of static stiffness of extendable tumor knee joint prosthesis for children. Electronic speckle pattern interferometry and finite element method were used for experimental and computational research, respectively. The procedure of experimental tests shows that the stiffness of the joint prosthesis can be determined experimentally by means of electronic speckle pattern interferometry, but the quantitative result of such a procedure cannot be captured directly in a finite element method model. The values of static stiffness calculated numerically do not fall within the range of experimental results. The discrepancy grows as the extension of the endoprosthesis increases and the value of relative difference between numerical and experimental results reaches the value of 54%. The inconsistency of results can be explained by the involvement of the joint linking the body of the implant to the moving part. While effective in the case of traditional, one-piece constructions, finite element method modeling does not yield satisfactory results in the case of such an elementary parameter as is the static stiffness of the implant, due to the difficulty in estimating the stiffness of the joint present in the sliding node. The use of the experimental method makes it possible to estimate the degree of this inconsistency.
Rocznik
Strony
39--48p.borkowski@pb.edu.pl
Opis fizyczny
Bibliogr. 24 poz., fig., tab.
Twórcy
autor
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
  • 1. Tschegg E.K., Herndler S., Weninger P., Jamek M., Stanzl-Tschegg S., Redl H. Stiffness analysis of tibia-implant system under cyclic loading. Materials Science and Engineering: C, 2008, 28, 1203-1208.
  • 2. Buma F., Van Loon P.J.M., Versleyen H., Weinans H., Slooff T.J.J.H., De Groat E.C., Huiskes R. Histological and biomechanical analysis of bone and interface reactions around hydroxyapatite-coated intramedullary implants of different stiffness: a pilot study on the goat. Biomaterials, 1997, 18, 1251-1260.
  • 3. Daas M., Dubois G., Bonnet A.S., Lipinski P., Rignon-Bret C. A complete finite element model of a mandibular implant-retained overdenture with two implants: Comparison between rigid and resilient attachment configurations. Medical Engineering & Physics, 2008, 30, 218-225.
  • 4. Hansson S., Ekestubbe A. Area moments of inertia as a measure of the mandible stiffness of the implant patient. Clinical Oral Implants Research, 2004, 15, 450-458.
  • 5. Hohenhoff G., Haferkamp H., Ostendorf A., Meier O., Ostermeier S., Schimek M. Adapting Titanium Implants to the Elasticity of Bone by Comparison of Spring Stiffness. Advanced Engineering Materials. 2007;9(5):365-369.
  • 6. Sumner D.R., Turner T.M., Igloria R., Urban R.M., Galante J.O. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. Journal of Biomechanics, 1998, 31, 909-917.
  • 7. Florin M., Arzdorf M., Linke B., Auer J.A. Assessment of stiffness and strength of 4 different implants available for equine fracture treatment: A study on a 20° oblique long-bone fracture model using a bone substitute. Veterinary Surgery, 2005, 34, 231-238.
  • 8. McCartney W., Mac Donald B.J., Hashmi M.S.J. Comparative performance of a flexible fixation implant to a rigid implant in static and repetitive incremental loading. Journal of Materials Processing Technology, 2005, 169, 476-484.
  • 9. Roderer G., Gebhard F., Duerselen L., Ignatius A., Claes L. Delayed bone healing following high tibial osteotomy related to increased implant stiffness in locked plating. Injury, 2014, 45(10), 1648-52.
  • 10. Schmidt U., Penzkofer R., Bachmaier S., Augat P. Implant Material and Design Alter Construct Stiffness in Distal Femur Locking Plate Fixation: A Pilot Study. Clinical Orthopaedics and Related Research, 2013, 471, 2808-2814.
  • 11. Yavari S.A., Van der Stok J., Ahmadi S.M., Wauthle R., Schrootene J., Weinans H., Zadpoor A.A. Mechanical analysis of a rodent segmental bone defect model: The effects of internal fixation and implant stiffness on load transfer. Journal of Biomechanics, 2014, 47(11), 2700-2708.
  • 12. Rohlmann A., Zander T., Bergmann G., Boustani H.N. Optimal stiffness of a pedicle-screw-based motion preservation implant for the lumbar spine. European Spine Journal. 2012, 21, 666-673.
  • 13. Zander T., Rohlmann A., Burra N.K., Bergmann G. Effect of a posterior dynamic implant adjacent to a rigid spinal fixator. Clinical Biomechanics. 2006, 21, 767-774.
  • 14. Rutherford S., Ness M.G. Effect of Contouring on Bending Structural Stiffness and Bending Strength of the 3.5 Titanium SOP Implant. Veterinary Surgery. 2012;41:983-987.
  • 15. 15. Li X., Wang C.T., Zhang W.G., Li Y.C. Properties of a porous Ti–6Al–4V implant with a low stiffness for biomedical application. Proceedings of IMechE Part H: Journal of Engineering in Medicine. 2009, 223, 173-178.
  • 16. Foruria A.M., Carrascal M.T., Revilla C., Munuera L., Sanchez-Sotelo J. Proximal humerus fracture rotational stability after fixation using a locking plate or a fixed-angle locked nail: The role of implant stiffness. Clinical Biomechanics, 2010, 25, 307–311.
  • 17. Kralinger F., Gschwentner M., Wambacher M., Smekal V., Haid C. Proximal humeral fractures: what is semi-rigid? Biomechanical properties of semi-rigid implants, a biomechanical cadaver based evaluation. Archives of Orthopaedic and Trauma Surgery, 2008, 128, 205-210.
  • 18. Lill H., Hepp P., Korner J., Kassi J.P., Verheyden A.P., Josten C., Duda G.N. Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens. Archives of Orthopaedic and Trauma Surgery. 2003, 123, 74-81.
  • 19. Borkowski P., Skalski K. Expandable endoprosthesis for growing patients Reliability and research. Biocybernetics and Biomedical Engineering. 2014, 34, 199-205.
  • 20. Koenigsberger F., Tlusty J. Machine Tool Structures. New York: Pergamon Press; 1970.
  • 21. Mrozek P. The use of electronic speckle pattern interferometry for evaluation of machine tool static stiffness. Lasers in Engineering, 2019, 43(1-3), 81-99.
  • 22. Yang L.X., Xie X., Zhu L.Q., Wu S.J., Wang Y.H. Review of electronic speckle pattern interferometry (ESPI) for three dimensional displacement measurement. Chinese Journal of Mechanical Engineering. 2014, 27, 1-12.
  • 23. Będziński R., Tyndyk M. Experimental methods of stress and strain analysis in orthopaedics biomechanics. Acta of Bioengineering and Biomechanics. 2000, 2(2), 1-23.
  • 24. Mrozek P., Mrozek E., Werner A. Electronic Speckle Pattern Interferometry for Vibrational Analysis of Cutting Tools. Acta Mechanica et Automatica. 2018, 12(2), 135-140.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6dd17e78-76bb-46cf-aa53-e43a77775012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.