PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On a visualization of the convergence of the boundary of generalized Mandelbrot set to (n-1)-sphere

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article we analyze the generalized Mandelbrot set in higher-order hypercomplex number spaces following both the Cayley-Dickson construction algebraic spaces and the spaces defined by Clifford algebras. The particular case of the generalized 3D quasi-Mandelbrot set was also considered. In particular, we investigated the increase of power of the iterated variable and proved that when this power tends to infinity, the Mandelbrot set is convergent to the unit circle. The same is true for the generalized Mandelbrot sets in higher-dimensional hypercomplex number spaces, i.e. when the power of iterated variable tends to infinity, the generalized Mandelbrot set is convergent to the unit (n-1)- sphere. The results of our investigation were visualized for the generalized Mandelbrot set in a complex number space and the generalized quasi-Mandelbrot set in a 3D Euclidean space.
Rocznik
Strony
63--69
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • Institute of Fundamentals of Machinery Design, Silesian University of Technology Gliwice, Poland
autor
  • Institute of Fundamentals of Machinery Design, Silesian University of Technology Gliwice, Poland
Bibliografia
  • [1] Gujar U.G., Bhavsar V.C., Fractals from z ← z α + c in the complex c-plane, Comput. Graph. 1991, 15, 441-449.
  • [2] Gujar U.G., Bhavsar V.C., Fractals images from z ← z α + c in the complex z-plane, Comput. Graph. 1992, 16, 45-49.
  • [3] Wang X.Y., Liu X.D., Zhu W.Y., Gu S.S., Analysis of c-plane fractal images from z ← z α + c for (α < 0), Fractals 2000, 8, 307-314.
  • [4] Garant-Pelletier V., Rochon D., On a generalized Fatou-Julia theorem in multicomplex spaces, Fractals 2009, 17, 241-255.
  • [5] Norton A., Julia sets in quaternions, Comput. Graph. 1989, 2, 267-278.
  • [6] Griffin C.J., Joshi G.C., Octonionic Julia sets, Chaos Soliton. Fract. 1992, 2, 11-24.
  • [7] Katunin A., On the symmetry of bioctonionic Julia sets, J. Appl. Math. Comput. Mech. 2013, 12, 23-28.
  • [8] Wang X.Y., Jin T., Hyperdimensional generalized M-J sets in hypercomplex number space, Nonlinear Dyn. 2013, 73, 843-852.
  • [9] Lakhtakia A., Varadan V.V., Messier R., Varadan V.K., On the symmetries of the Julia sets for the process z → z p + c, J. Phys. A: Math. Gen. 1987, 20, 3533-3535.
  • [10] Dixon S.L., Steele K.L., Burton R.P., Generation and graphical analysis of Mandelbrot and Julia sets in more than four dimensions, Comput. Graph. 1996, 20, 451-456.
  • [11] http://www.skytopia.com/project/fractal/mandelbulb.html (accessed on Dec 16, 2014).
  • [12] http://www.bugman123.com/Hypercomplex/index.html (accessed on Dec 16, 2014).
  • [13] Blancharel P., Complex analytic dynamics on the Riemann sphere, Bull. Am. Math. Soc. 1984, 11, 88-144.
  • [14] Liu X., Zhu Z., Wang G., Zhu W., Composed accelerated escape time algorithm to construct the general Mandelbrot set, Fractals 2001, 9, 149-153.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6dcff3ac-743f-4160-acb3-cf63f2a4f81e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.