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Abstract. In this article we analyze the generalized Mandelbrot set in higher-order hyper-

complex number spaces following both the Cayley-Dickson construction algebraic spaces 

and the spaces defined by Clifford algebras. The particular case of the generalized 3D  

quasi-Mandelbrot set was also considered. In particular, we investigated the increase of 

power of the iterated variable and proved that when this power tends to infinity, the Man-

delbrot set is convergent to the unit circle. The same is true for the generalized Mandelbrot 

sets in higher-dimensional hypercomplex number spaces, i.e. when the power of iterated 

variable tends to infinity, the generalized Mandelbrot set is convergent to the unit (n-1)-

sphere. The results of our investigation were visualized for the generalized Mandelbrot set 

in a complex number space and the generalized quasi-Mandelbrot set in a 3D Euclidean 

space. 
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Introduction  

The Mandelbrot set (M-set) has been intensively studied by numerous research-

ers and research groups since it was discovered by Benoît Mandelbrot in 1979. 

This set was discovered based on earlier studies of Julia and Fatou in 1920 on dy-

namics of complex variable systems. Since the classic M-set was discovered, many 

generalizations have been developed to date. These generalizations include both 

modifications of initial analytic form describing the M-set (higher-order polynomi-

al representation, generalized power value of an iterated variable) [1-3] and the 

generalizations to higher-dimensional multicomplex [4] and hypercomplex number 

spaces [5-8]. 

In the present study the authors considered both generalization types: generali-

zation of power value of an iterated variable in M-set and generalization of M-set 

to the higher-order hypercomplex number spaces. The studies were focused on the 

specific conditions at which the boundary of M-set ceases to be fractal. These con-

ditions can be disseminated to the generalized M-sets in higher-order hypercom-
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plex number spaces. Moreover, it was proven that the constant control parameter in 

the analytic equation of the generalized M-set is negligible when the power value 

of an iterated variable tends to infinity. 

1. Mandelbrot set and its generalizations 

The classic M-set can be presented in analytic form using the following recur-

sive equation: 

 
2

1k k
z z c
+
= + , ,z c∈C , (1) 
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k k
z
∀ ∈
<
N

 and the starting value of a sequence { }
k
z  is usually set to zero, c is 

the control parameter. The generalization of (1) with respect to the power value of 

an iterated variable z was introduced in [9] and has the following form: 

 
1k k

z z c
α

+
= + , ,z c∈C , α∈R . (2) 

In [9] the graphical analysis of the sets constructed this way with variable α and 

c was performed. The authors of [9] stated that both variables have a significant  

influence on the shape of the M-set and determine its properties. 

Further studies on M-sets (and J-sets as specific subproblems of the M-set) were 

performed for the generalizations of the M-set to the hypercomplex number spaces. 

Norton [5] and Griffin and Joshi [6] studied the classic M-set (1) generalized to the 

quaternionic and octonionic hypercomplex number spaces, respectively. In these 

cases the form of (1) remains unchanged, while ,z c∈H  for the quaternionic gen-

eralization and ,z c∈O  for the octonionic one. As it was stated in [7], further gen-

eralizations following the Cayley-Dickson construction are not possible since the 

generalized M-sets are not closed under addition and multiplication anymore. 

The generalizations of a generalized M-set (2) to higher-dimensional hyper-

complex number spaces were introduced by Dixon et al. [10] and then investigated 

in more depth by Wang and Jin [8]. These generalizations were based on the 

Clifford algebras, which hold the condition of closing under addition and multipli-

cation of M-set for an arbitrary-dimensional number space. 

The last considered construction is a 3D quasi-M-set constructed by two enthu-

siasts: White and Nylander [11]. Since the canonical 3D M-set cannot exist due to 

the nonexistence of 3D analogue of a space of complex numbers or a space of qua-

ternions, White and Nylander proposed the construction of an analogue of general-

ized 3D M-set (widely known as the Mandelbulb named after its characteristic 

shape) using spherical coordinates [12]: 

 ( ) ( ) ( ) ( ) ( ), , sin cos ,sin sin ,cosx y z r
α

α αθ αϕ αθ αϕ αθ= , (3) 
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where 222
zyxr ++= , ( )xyarctan=ϕ  and 






 += zyx

22
arctanθ . Although this 

construction is not formally a 3D M-set, it exhibits the fractal nature of its surface 

and thus can be analyzed in terms of the investigated problem. 

2. Analysis of convergence 

Let us consider the generalized M-set given by (2). The increase of α causes 

significant changes in the shape of the M-set, when α is considerably small. How-

ever, when the value of α increases the shape of the M-set it tends to the circular 

shape. This leads to the formulation of a following theorem. 
 

Theorem. The boundary of a generalized M-set of type (2) tends to unit circle 

when α → ∞. 

Proof. Suppose c = 0 in (1), which simplifies (1) to the form: 

 2

1
:

kk
zzf =

+
, C∈z . (4) 

In case of application of the recursive procedure following (4) one obtains three 

possibilities: when 1>
k
z  the generated point is the repelling point, i.e. k

z  will 

grow successively for ∞→k ; when 1<
k
z  the generated point is the attractive 

point, i.e. 0→
k
z  when ∞→k ; and finally, when 1=

k
z  one obtains the point 

which constitutes the boundary of the generated set. Accordingly, there exist two 

attracting points 
0
x  and 

∞
x  of f at 0 and ∞ for ( ) xxf =  and ( ) 10 <′≤ xf , and 

a dense set of repelling points 
k
x  of f for the cases ( ) 1−<′ xf  or ( ) 1>′ xf . Follow-

ing this, during the iteration procedure of ( )xf  for ( )ω
ω

ix exp= , one obtains the 

unit circle constructed from vectors [ ]
ω
xxv ,

0
=

�

 with a radius defined by v

�

 in  

a complex number space since the iteration corresponds to the rotation by ω . 

Now, suppose α → ∞ in (2). In this case during the iteration procedure one  

obtains the same possibilities of 
k
z  as for (4). The M-set tends to the unit circle for 

arbitrary value of c. This causes that in the limit case (when α → ∞) the resulted set 

has a non-fractal boundary. 
 

Corollary 1. The proof of the above-presented theorem can be generalized to the 

generalized M-sets in the considered hypercomplex number spaces, namely: 

 
1k k

z z c
α

+
= + , ,z c∈H , ]( ), 2 2,α ∈ −∞ − ∪ ∞ , (5) 
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1k k

z z c
α

+
= + , ( ), ,z c Cl∈ ⋅ ⋅ , ]( ), 2 2,α ∈ −∞ − ∪ ∞ , (7) 

where H, O and ( )⋅⋅,Cl  denotes a quaternion, octonion and Clifford number spaces, 

respectively, since if α → ∞, then ∞→
α

k
z  and c has no influence on the resulted 

set. Depending on the considered hypercomplex number space, the resulted set will 

be the unit (n-1)-sphere, where n is the dimension of a considered space. 

 

Proof. Similarly as previously one can recall three mentioned possibilities for the 

values of k
z . Considering (4) and replacing C∈z  by H∈z , O∈z  and ( )⋅⋅∈ ,Clz , 

subsequently, one can define the attractive points 
0
x  and 

∞
x  of f at 0 and ∞ that 

satisfy ( ) xxf =  and ( ) 10 <′≤ xf , and a dense set of repelling points 
k
x  of f for 

the cases ( ) 1−<′ xf  or ( ) 1>′ xf  for each of the mentioned number spaces. Con-

sidering this definition  ( ) αzzf =  and ( )
m

zzf m α

=  it can be observed that when      

m → ∞, if 1>
k
z  then ( ) ∞→zf m , if 1<

k
z  then ( ) 0→zf m  and if 1=

k
z  then 

( )zf m  is a boundary of a unit (n-1)-sphere. Similar conclusions can be found for 

the generalized Julia set [13]. 
 

Corollary 2. The proof of the above-presented theorem can be generalized also to 

the 3D quasi-M-set. In the case when α → ∞, the resulted quasi-M-set tends to the 

unit 2-sphere. 

 

Proof. Since the form of (3) differs from previously investigated recursive equa-

tions one can use the trigonometric approach. In this case the iterative procedure 

can be presented as 

 ( ) czzBf +=
α

: , 3
, R∈cz , ]( )[ ∞∪−∞−∈ ,22,α , (8) 

where B is a generalized 3D quasi-M-set and z is given by a triplet ( )αθαϕα

,,r , 

which is a point in spherical coordinates. Following this, one can deduce that for    

α → ∞ equation (8) reduces to ( ) αzzBf =: , ( ) αzzf = , and the only parameter of 

an above triplet that has an influence on the distance of a generated point from the 

origin is r. Obviously, when α → ∞, if 1>r then ( ) ∞→zf , if 1<r then ( ) 0→zf  

and if 1=r  then ( )zf  forms a boundary of a unit 2-sphere. 
 

In order to analyze the phenomenon, several computer simulations for the gen-

eralized M-set in a complex number space and the generalized quasi-M-set in 3D 

Euclidean space were performed. In the first case a Matlab
®
 routine was used for 

implementation of the recursive procedure of the M-set known as the Escape Time 

Algorithm (see e.g. [14]). The generation of subsequent points was based on a loop 

with a predefined number of iterations (assumed as 100), where the initial value z0 
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was defined by a grid with a resolution of resulted image. The loop iteration was 

performed on (2) and additionally contained a condition: 2≤
k
z , where the value  

2 is the Bailout value, for determination of interior and exterior parts limited by the 

M-set and definition of the coloring properties, i.e. the interior part (inside the  

M-set) was colored black, while the colors defined for the exterior part (outside the 

M-set) denote the speed of convergence to infinity. The evolution of the shape of 

M-sets for variable α with a constant c was presented in Figure 1. 

 

 

Fig. 1. M-sets for: a) α = 2, b) α = 3, c) α = 5, d) α = 10, e) α = 20, f) α = 50, g) α = 100, 

h) α = 500, i) α = 100 000 in a complex number space 

The 3D quasi-M-set was visualized using Chaos Pro software, where the algo-

rithm proposed by Nylander and White was implemented. In this case the recursion 
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is performed following equation (3) using the modified Escape Time algorithm 

with input parameters of Bailout value and a power α of a quasi-M-set. The  

obtained boundary is then rendered using available color maps. 

 

 

Fig. 2. Quasi-M-sets for: a) α = 2, b) α = 3, c) α = 5, d) α = 10, e) α = 20, f) α = 50,

  g) α = 100, h) α = 200, i) α = 5000 in a 3D Euclidean space 

One can observe the convergence of M-set to the unit circle for α = 100  

(Fig. 1g) and for α = 100000 (Fig.1i) the unit circle is observed for the assumed 

resolution of a rendered picture. Based on the analysis of visual representation of 

the M-sets for various α it is obvious that when α → ∞ the influence of c becomes 

negligible. Similarly, the evolution of 3D quasi-M-sets for variable α with a con-

stant c was presented in Figure 2. In the case of these sets the convergence to the 

unit sphere can be observed. Similarly to the M-sets in a complex number space the 

3D quasi-M-set with α = 5000 (Fig. 2i) seems to be a sphere considering the  

assumed resolution of a rendered picture. 
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Conclusions 

The performed analysis of the generalized M-set to the higher-order hypercom-

plex number spaces, when a power of iterated variable in the recursive equation of 

M-set tends to infinity, shows that the analyzed set is convergent to (n-1)-sphere, 

where n denotes the dimension of a considered space. The visualization of evolu-

tion of the generalized M-set in a complex number space, as well as the generalized 

quasi-M-set in 3D Euclidean space with increasing power of iterated variable addi-

tionally confirmed the formulated theorem. It was also shown that when the power 

of iterated variable tends to infinity, the influence of a constant control parameter is 

negligible. 
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