PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Free vibrations of a flat frame partially resting on a Winkler elastic foundation in terms of uneven distribution of flexural stiffness

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work was devoted to the issue of free vibrations and loss of stability of a Γ-type flat frame made of a prismatic beam and a column with a variable cross-section, partially supported on a Winkler elastic foundation. The physical model of the system was subjected to the Euler’s force. The problem was formulated on the basis of the Bernoulli-Euler theory. Based on the Hamilton’s principle, differential equations of displacements and boundary conditions were determined. The numerical algorithm was used to find the maximum critical force being a function of many variables. Within the kinetic criterion of loss of stability, the changes in the natural frequency of optimized frame as a function of external load was determined. On the basis of the obtained results it was concluded that it is possible to control (improve) the dynamic properties while improving the stability of the system through elastic base support and appropriate shaping.
Rocznik
Strony
art. no. 2024310
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
  • Czestochowa University of Technology, Częstochowa, Dąbrowskiego 73
  • Czestochowa University of Technology, Częstochowa, Dąbrowskiego 73
Bibliografia
  • 1. M.S. Abdel-Jaber, A.A. Al-Qaisia, M. Abdel-Jaber, R.G. Beale; Nonlinear natural frequencies of an elastically restrained tapered beam; J. Sound Vibr., 2008, 313, 772-783; DOI: 10.1016/j.jsv.2007.11.050
  • 2. D. Adair, A. Ibrayev, A. Tazabekova, J.R. Kim; Free vibrations with large amplitude of axially loaded beams on an elastic foundation using the Adomian Modified Decomposition Method; Shock Vib., 2019, 2019, 3405057; DOI: 10.1155/2019/3405075
  • 3. M.H. Ghayesh; Resonant dynamics of axially functionally graded imperfect tapered Timoshenko beams; J. Vib. Control, 2019, 25(2), 336-350; DOI: 10.1177/1077546318777591
  • 4. O.T. Olotu, J.A. Gbadeyan, O.O. Agboola; Free Vibration Analysis of Tapered Rayleigh Beams resting on Variable Two-Parameter Elastic Foundation; Forces Mech., 2023, 12, 100215; DOI: 10.1016/j.finmec.2023.100215
  • 5. J.T. Katsikadelis, G.C. Tsiatas; Non-linear dynamic stability of damped Beck’s column with variable cross-section; Int. J. Nonlin. Mech., 2007, 42, 164-171; DOI: 10.1016/j.ijnonlinmec.2006.10.019
  • 6. S. Uzny, K. Sokół; Critical Load of a Differently Mounted Columns Determinated According to the Bernoulli-Euler and Timoshenko Theories; Mach. Dyn. Research, 2015, 39(2), 5-14
  • 7. M.A. Langthjem, Y. Sugiyama; Optimum design of cantilevered columns under the combined action of conservative and nonconservative loads. Part I: The undamped case; Comp. and Struct., 2000, 74(4), 385-399; DOI: 10.1016/S0045-7949(99)00051-6
  • 8. Y. Sugiyama, K. Katayama, K. Kiriyama, B.-J. Ryu; Experimental verification of dynamic stability of vertical cantilevered columns subjected to a sub-tangential force; J. Sound Vibr., 2000, 236(2), 193-207; DOI: 10.1006/jsvi.1999.2969
  • 9. N. Bazeos, D.L. Karabalis; Efficient computation of bucking loads for plane steel frames with tapered members; Eng. Struct., 2006, 28, 771-775; DOI: 10.1016/j.engstruct.2005.10.004
  • 10. A.S. Galvao, A.R.D. Silva, R.A.M. Silveira, P.B. Goncalves; Nonlinear dynamic behaviour and instability of slender frames with semi-rigid connections; Int. J. Mech. Sciences, 2010, 52, 1547-1562; DOI: 10.1016/j.ijmecsci.2010.07.002
  • 11. G.R. Heppler, D.C.D. Oguamanam, J.S. Hansen; Vibration of a two-member open frame; J. Sound Vibr., 2003, 263, 299-317; DOI: 10.1016/S0022-460X(02)01125-2
  • 12. R.T. Wang; Vibration of a A-type curved frame due to a moving force; J. Sound Vibr., 1998, 215, 143-165; DOI: 10.1006/jsvi.1998.2556
  • 13. W. Sochacki, M. Bold; Damped vibrations of the Γ type frame with open cracks; J. Vibroeng., 2018, 20(1); 215-224; DOI: 10.21595/jve.2017.18733
  • 14. W. Sochacki, M. Bold; Transverse and longitudinal damped vibration of the Γ type frame; J. Appl. Math. Comput. Mech., 2016, 15(2), 147-155; DOI: 10.17512/jamcm.2016.2.16
  • 15. J. Szmidla, J. Wiktorowicz; The vibrations and the stability of a flat frame type G realizing the Euler’s load taking into account the vulnerability of the structural node connecting the pole and the bolt of the system; Vibrations in Physical Systems, 2014, 26, 297-304
  • 16. J. Szmidla, J. Wiktorowicz: An influence of the geometrical nonlinearity of a frame column of flat frame type G subjected to the follower force directed towards the positive pole on its stability; J. Appl. Math. Comput. Mech., 2016, 15(3), 155-165; DOI: 10.17512/jamcm.2016.3.15
  • 17. H. Lohar, G. Dutta, A. Mitra; Nonlinear free vibration of statically deformed axially functionally graded beam embedded on Pasternak foundation, 2023, Materials Today: Proceedings, DOI: 10.1016/j.matpr.2023.03.352
  • 18. H.-J. Jiang, Q.-Z. Guo, X.-G. Wang, N.-H. Gao; Comparison of free vibration behaviors for simply supported and clamped T-shaped thin plate resting on Winkler elastic foundation; Thin-Walled Struct., 2024, 197, 111621; DOI: 10.1016/j.tws.2024.111621
  • 19. J. Szmidla, A. Jurczyńska; Local loss of a rectilinear form of a static equilibrium of geometrically nonlinear system with non-prismatic element under force directed towards the pole; Acta Physica Pol. A, 2020, 138(2), 140-143; DOI: 12.693/ApsyhPolA.138.140
  • 20. J. Szmidla, A. Jurczyńska; The tapered Column Shape Optimisation in a Plane Perpendicular to the Buckling Plane Subjected to a Load by the Follower Force Directed to the Positive Pole; Mach. Dyn. Research, 2015, 39(2), 33-44
  • 21. J. Szmidla, A. Jurczyńska; An influence of a non-prismatic rod as a part of a geometrically nonlinear system under generalized load with a force directed towards the positive pole on the value of the bifurcation load; Engineeringg Mechanics 2018, 24th International Conference, 14-17 May 2018, Svratka, Czech Republic, Book of full texts, 841-844; DOI: 10.21495/91-8-841
  • 22. J. Szmidla, A. Jurczyńska; Stability of Geometrically Nonlinear Pre-stressed Column Loaded by a Force Directed Towards the Positive Pole Partially Lying on Winkler Elastic Foundation; Proc. of the International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014), AIP Conf. Proc. 1648, 2014, 850038-1-850038-4; DOI: 10.1063/1.4913093
  • 23. J. Szmidla, A. Jurczyńska; An influence of the Winkler elastic foundation of a geometrically nonlinear column loaded by force directed towards the positive pole on a type of system; J. Appl. Math. Comput. Mech., 2015, 14(4), 79-91; DOI: 10.17512/jamcm.2015.4.08
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6dcebf44-380d-42d3-a231-604505338a47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.