PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Practical and asymptotic stabilities for a class of delayed fractional discrete-time linear systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The practical and asymptotic stabilities of delayed fractional discrete-time linear systems described by the model without a time shift in the difference are addressed. The D-decomposition approach is used for stability analysis. New necessary and sufficient stability conditions are established. The conditions in terms of the location of eigenvalues of the system matrix in the complex plane are given.
Rocznik
Strony
509--515
Opis fizyczny
Bibliogr. 23 poz., wykr.
Twórcy
autor
  • Bialystok University of Technology, Faculty of Electrical Engineering, 45D Wiejska St., 15-351 Białystok, Poland.
Bibliografia
  • [1] H.G. Sun, Y. Zhang, D. Baleanu, W. Chen and Y.Q. Chen, “A new collection of real world applications of fractional calculus in science and engineering”, Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018).
  • [2] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, 2008.
  • [3] T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer, Berlin, 2011.
  • [4] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • [5] C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, and V. Feliu- Batlle, Fractional-Order Systems and Controls Fundamentals and Applications, Springer, London, 2010.
  • [6] P. Ostalczyk, Discrete Fractional Calculus: Applications in Control and Image Processing, Series in Computer Vision, World Scientific Publishing, Singapore, 2016.
  • [7] J. Sabatier, O.P.Agrawal, and J.A.T. Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, London, 2007.
  • [8] M. Busłowicz and A. Ruszewski, “Necessary and sufficient conditions for stability of fractional discrete-time linear state-space systems”, Bull. Pol. Ac.: Tech. 61 (4), 779–786 (2013).
  • [9] A. Dzielinski and D. Sierociuk, “Stability of discrete fractional state-space systems”, J. Vibr. Control 14, 1543–1556 (2008).
  • [10] P. Ostalczyk, “Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains”, J. Appl. Math. Comput. Sci. 22 (3), 533–538 (2012).
  • [11] R. Stanisławski and K.J. Latawiec, “Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for asymptotic stability”, Bull. Pol. Ac.: Tech. 61 (2), 353–361 (2013).
  • [12] R. Stanisławski and K.J. Latawiec, “Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems”, Bull. Pol. Ac.: Tech. 61 (2), 363–370 (2013).
  • [13] T. Kaczorek, “Practical stability of positive fractional discretetime systems”, Bull. Pol. Ac.: Tech. 56 (4), 313–317 (2008).
  • [14] K. Oprzędkiewicz and E. Gawin, “The practical stability of the discrete, fractional order, state space model of the heat transfer process”, Arch. Control Sci. 28 (3), 463–482 (2018).
  • [15] T. Kaczorek and P. Ostalczyk, “Responses comparison of the two discrete-time linear fractional state-space models”, Fractional Calc. Appl. Anal. 19, 789–805 (2016).
  • [16] T. Kaczorek, “A new approach to the realization problem for fractional discrete-time linear systems”, Bull. Pol. Ac.: Tech. 64 (1), 9–14 (2016).
  • [17] A. Ruszewski, “Practical and asymptotic stability of fractional discrete-time scalar systems described by a new model”, Arch. Control Sci. 26 (4), 441–452 (2016).
  • [18] A. Ruszewski, “Stability analysis for the new model of fractional discrete-time linear state-space systems”, In: A. Babiarz et al. (eds.), Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, 407, 381–389, Springer (2017).
  • [19] D. Mozyrska, P. Ostalczyk, and M. Wyrwas, “Stability conditions for fractional-order linear equations with delays”, Bull. Pol. Ac.: Tech. 61 (4), 449–454 (2018).
  • [20] A. Ruszewski, “Stability analysis of fractional discrete-time linear scalar systems with pure delay”, In: P. Ostalczyk et al. (eds.), Non-Integer Order Calculus and Its Applications, Lecture Notes in Electrical Engineering, 496, 84–91, Springer (2019).
  • [21] A. Ruszewski, “Stability analysis for a class of fractional discretetime linear scalar systems with multiple delays in state”, In: A.B. Malinowska et al. (eds.), Advances in Non-integer Order Calculus and Its Applications, Lecture Notes in Electrical Engineering, 559, 201–212, Springer (2020).
  • [22] E.N. Gryazina, B.T. Polyak, and A.A. Tremba, “D-decomposition technique state-of-the-art”, Autom. Remote Control 69 (12), 1991–2026 (2008).
  • [23] J. Ackermann, Sampled-Data Control Systems, Springer, Berlin, 1985.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6dcaef70-6d84-4a6b-a3d3-6e360fa4398d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.