PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the Addition of Dispersed Reinforcement on the Resilient Modulus of Slightly Cemented Non-Cohesive Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
19th KKMGiIG
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to determine the effect of the addition of dispersed reinforcement on the resilient modulus of non-cohesive soil used as material for improved subgrade or subbase course of the pavement structure. Resilient modulus (Mr) is a parameter used in road construction, which characterises soil subgrade or base aggregates stiffness in flexible pavement subjected to the traffic load. This article presents laboratory test results of non-cohesive coarse material (gravelly sand – grSa – without fines) with the addition of 1.5% cement and dispersed reinforcement – polypropylene fibres in lengths of 12, 18 and 40 mm. Tests were conducted on the samples with various percentages of fibres (0, 0.2 and 0.3%) relating to the dry mass of the soil. Samples were compacted according to the standard Proctor (SP) and modified Proctor (MP) methods. Main laboratory tests were conducted in the triaxial apparatus enabling testing samples subjected to cyclic loads according to AASHTO T307 standard. Resilient modulus was determined after 7 and 28 days of curing. The results indicate the influence of fibre amount, fibre length, and curing time on the Mr of the soil modified with 1.5% of cement. The obtained results were also influenced by the method of compaction. The addition of polypropylene fibres decreases the resilient modulus of soil stabilised by 1.5% of cement. The best results of dispersive reinforcement were obtained for samples containing 0.3% of fibres with a length of 18 mm, compacted by the MP methods.
Wydawca
Rocznik
Strony
293--303
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska St. 45E, 15-351 Białystok
  • Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska St. 45E, 15-351 Białystok
  • Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska St. 45E, 15-351 Białystok
Bibliografia
  • [1] AASHTO T 307-99; Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials. American Association of State and Highway Transportation Officials: Washington, DC, USA, 2021.
  • [2] ASTM D1241-15; Standard Specification for Materials for Soil-Aggregate Subbase, Base, and Surface Courses. ASTM International: West Conshohocken, PA, USA, 2020.
  • [3] Ahmed, A.H., Hassan, A.M., & Lotfi, H.A. (2020). Stabilization of expansive sub-grade soil using hydrated lime and dolomitic-limestone by-product (DLP). Geotechnical and Geological Engineering, 38, 1605–1617. https://doi.org/10.1007/s10706-019-01115-5
  • [4] Brown, S.F. (1996). Soil mechanics in pavement engineering. Geotechnique, 46(3), 383–426.
  • [5] Brown, S.F., & Selig, E. T. (1991). The design of pavement and rail track foundations. In M. P. O’Reilly & S. F. Brown (Eds.), Cyclic loading of soils: from theory to design. Blackie Publisher, (249–305).
  • [6] Consoli, N.C., Bassani, M.A.A., & Festugato L. (2010). Effect of fiber-reinforcement on the strength of cemented soils. Geotextiles and Geomembranes, 28(4), 344–351. https://doi.org/10.1016/j.geotexmem.2010.01.005
  • [7] Consoli, N.C., Casagrande, M.D., Prietto, P.D., & Thomé, A. (2003). Plate load test on fiber-reinforced soil. Journal of Geotechnical and Geoenvironmental Engineering, 129, 951–955.
  • [8] Consoli, N.C., Prietto, P.D.M., & Ulbrich, L.A. (1998). Influence of fiber and cement addition on behaviour of sandy soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124 (12), 1211–1214. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1211)
  • [9] Consoli, N.C., de Moraes, R.R., & Lucas Festugato, L. (2013). Variables controlling strength of fibre-reinforced cemented soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 166(4), 221–232. https://doi.org/10.1680/grim.12.00004
  • [10] EN 13242:2007; Aggregates for Unbound and Hydraulically Bound Materials for Use in Civil Engineering Work and Road Construction. European Committee for Standardization: Brussels, Belgium, 2007.
  • [11] EN 933-1:2012; Tests for Geometrical Properties of Aggregates-Part 1: Determination of Particle Size Distribution-Sieving Method. European Committee for Standardization: Brussels, Belgium, 2012.
  • [12] EN ISO 14688-1:2018; Geotechnical Investigation and Testing. Identification and Classification of Soil. Identification and Description. ISO: Geneva, Switzerland, 2018.
  • [13] EN ISO 14688-2:2018-05; Geotechnical Investigation and Testing-Identification and Classification of Soil-Part 2: Principles for a Classification. ISO: Geneva, Switzerland, 2018.
  • [14] Festugato, L., Flórez Gálvez, J. H., Dias Miguel, G., & Consoli, N. C. (2022). Cyclic response of fibre reinforced dense sand. Transportation Geotechnics, 37, 100811. https://doi.org/10.1016/j.trgeo.2022.100811
  • [15] Gao, Z., & Zhao, J., (2012). Evaluation on failure of fiber-reinforced sand. Journal of Geotechnical and Geoenvironmental Engineering. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000737
  • [16] Georgees, R.N., Hassan, R.A., Evans, R.P., & Jegatheesan, P. (2018). Resilient response characterization of pavement foundation materials using a polyacrylamide-based stabilizer. Journal of Materials in Civil Engineering, 30(1). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002109
  • [17] Hamidi, A., & Hooresfand, M. (2013). Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36, 1–9. https://doi.org/10.1016/j.geotexmem.2012.10.005
  • [18] Ibraim, E., Diambra, A., Muir Wood, D., & Russel, A.R. (2010) Static liquefaction of fibre reinforced sand under monotonic loading. Geotextiles and Geomembranes, 28(5), 374–385. https://doi:10.1016/j.geotexmem.2009.12.001
  • [19] Ismail, A., Baghini, M.S., Karim, M.R., Shokri, F., Al-Mansob, R.A., Firoozi, A.A., & Firoozi, A.A. (2014). Laboratory investigation on the strength characteristics of cement-treated base. Applied Mechanics and Materials, 507, 353–360. https://doi.org/10.4028/www.scientific.net/amm.507.353
  • [20] Khattak, M.J., & Alrashidi, M. (2006). Durability and mechanistic characteristics of fiber reinforced soil–cement mixtures. International Journal of Pavement Engineering, 7(1), 53–62. https://doi.org/10.1080/10298430500489207
  • [21] Khodabandehlou, S., Makarchian, M., & Razmara, M. (2023). Effect of polypropylene fibre reinforcement on UCS and ductility of cemented sand. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 176(1), 42–48. https://doi.org/10.1680/jgeen.21.00032
  • [22] Kim, D., & Kim, J.R. (2007). Resilient behavior of compacted subgrade soils under the repeated triaxial test. Construction and Building Materials, 21(7), 1470–1479. https://doi.org/10.1016/j.conbuildmat.2006.07.006
  • [23] Lekarp, F., Isacsson, U., & Dawson, A. (2000). State of the art. I: Resilient response of unbound aggregates. Journal of Transportation Engineering, 126(1), 66–75. https://doi.org/10.1061/(ASCE)0733-947X(2000)126:1(66)
  • [24] Li, J., Tang, C., Wang, D., Pei, X., & Shi, B. (2014). Effect of discrete fibre reinforcement on soil tensile strength. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 133–137. https://doi.org/10.1016/j.jrmge.2014.01.003
  • [25] Mahvash, S., López-Querol, S., & Bahadori-Jahromi, A. (2018). Effect of fly ash on the bearing capacity of stabilised fine sand. Proceedings of the Institution of Civil Engineers - Ground Improvement, 171(2), 82–95. https://doi.org/10.1680/jgrim.17.00036
  • [26] Noaman, M. F., Khan, M., Ali, K., & Hassan, A. (2022). A review on the effect of fly ash on the geotechnical properties and stability of soil. Cleaner Materials, 6, 100151. https://doi.org/10.1016/j.clema.2022.100151
  • [27] Park, S. (2011). Unconfined compressive strength and ductility of fiber-reinforced cemented sand. Construction and Building Materials, 25(2), 1134–1138. https://doi.org/10.1016/j.conbuildmat.2010.07.017
  • [28] Rashid, A.S.A., Shirazi, M.G., Mohamad, H., & Sahgi, F. (2017). Bearing capacity of sandy soil treated by Kenaf fibre geotextile. Environmental Earth Sciences, 76, 431. https://doi.org/10.1007/s12665-017-6762-y
  • [29] Sadek, S., Najjar, S.S., & Freiha, F., (2010). Shear strength of fiber-reinforced sands. Journal of Geotechnical and Geoenvironmental Engineering 136(3), 490–499. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000235
  • [30] Saxena, P., Tompkins, D., Khazanovich, L., & Balbo, J.T. (2010). Evaluation of characterization and performance modeling of cementitiously stabilized layers in the mechanistic–empirical pavement design guide. Transportation Research Record, 2186(1), 111–119. https://doi.org/10.3141/2186-12
  • [31] Seed, H.B., Chan, C.K., & Lee, C.E. (1962). Resilience characteristics of subgrade soils and their relation to fatigue failures in asphalt pavements. Proceedings, First International Conference on Structural Design of Asphalt Pavements, Ann Arbor, 20–24 August 1962. https://doi.org/10.4236/ojce.2017.74034
  • [32] Solanki, P., Zaman, M. M., & Dean, J. (2010). Resilient modulus of clay subgrades stabilized with lime, class C fly ash, and cement kiln dust for pavement design. Transportation Research Record, 2186(1), 101–110. https://doi.org/10.3141/2186-11
  • [33] Wang, W., Lv, B., Zhang, C., Li, N., & Pu, S. (2022). Mechanical characteristics of lime-treated subgrade soil improved by polypropylene fiber and class F fly ash. Polymers 2022, 14, 2921. https://doi.org/10.3390/polym14142921
  • [34] Yetimoğlu, T., & Salbas, O. (2003). A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotextiles and Geomembranes, 21, 103–110. https://doi.org/10.1016/S0266-1144(03)00003-7
  • [35] Yetimoglu, T., Inanir, M., Esat Inanir, O., (2005). A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay. Geotextiles and Geomembranes, 23, 174–183. https://doi.org/10.1016/j.geotexmem.2004.09.004
  • [36] Yilmaz, Y. (2015). Compaction and strength characteristics of fly ash and fiber amended clayey soil. Engineering Geology, 188, 168–177. https://doi.org/10.1016/j.enggeo.2015.01.018
  • [37] Yin, Z., Lekalpure, R.L., Ndiema, K.M. (2022). Experimental study of black cotton soil stabilization with natural lime and pozzolans in pavement subgrade construction. Coatings, 12, 103. https://doi.org/10.3390/coatings12010103
  • [38] Zabielska-Adamska, K., Dobrzycki, P., & Wasil, M. (2023). Estimation of stiffness of non-cohesive soil in natural state and improved by fiber and/or cement addition under different load conditions. Materials, 16(1):417. https://doi.org/10.3390/ma16010417
  • [39] Zabielska-Adamska, K., Wasil, M., & Dobrzycki, P. (2021). Resilient response of cement-treated coarse post-glacial soil to cyclic load. Materials, 14(21):6495. https://doi.org/10.3390/ma14216495
  • [40] Zimar, Z., Robert, D., Zhou, A., Giustozzi, F., Setunge, S., & Kodikara, J. (2022) Application of coal fly ash in pavement subgrade stabilisation: A review. Journal of Environmental Management, 312: 114926. https://doi.org/10.1016/j.jenvman.2022.114926
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6dc4fcc4-270d-480f-af1b-f308906fcb4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.