PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effects of pre-process and post-process parameters on formability of magnesium alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper highlights the basic characteristics of magnesium related to forming at elevated temperatures. The paper is divided into three sections. In the first section basic characteristics and applications of magnesium alloys are discussed, after then the focus is diverted to pre-processing and post-processing parameters including punch force, blank holder force, texture conditions, thickness and temperature distributions during forming, and springback effects. In the last section improvements in formability are highlighted by referring to forming limit diagrams to compare magnesium’s performances with other alloys. By summarizing all these pre-processing and post-processing parameters directions are established to improve the formability of magnesium and guidance is provided for future research in this area.
Rocznik
Strony
799--809
Opis fizyczny
Bibliogr. 75 poz., rys., tab.
Twórcy
autor
  • Faculty of Design and Creative Technologies, School of Engineering, Auckland University of Technology, Auckland, New Zealand
autor
  • Faculty of Design and Creative Technologies, School of Engineering, Auckland University of Technology, Auckland, New Zealand
Bibliografia
  • [1] C. Chang, C. Lee, J. Huang, Cavitation Characteristics in AZ31 Mg Alloys During LTSP or HSRSP, Acta Materialia 52 (2004) 3111-3122.
  • [2] P. Cavaliere, P.P. De Marco, Effect of Friction Stir Processing on Mechanical and Microstructural Properties of AM60B magnesium alloy, Journal of Materials Science 41/11 (2006) 3459-3464.
  • [3] J. Kaneko, M. Sugamata, M. Numa, Y. Nishikawa, H. Takada, Effect of texture on the mechanical properties and formability of magnesium wrought materials, Journal of the Japan Institute of Metals 64/2 (2000)141-147.
  • [4] W. Lihui, D. Tang, T.D. Jiang, C. Yu, Prospect of magnesium alloy in metallurgical industry, Journal of Wuhan Engineering Institute 1 (2011) 8-10.
  • [5] H. Furuya, N. Kogiso, S. Matunaga, K. Senda, Applications of magnesium alloys for aerospace structure systems, Materials Science Forum 350-352 (2000) 341-148.
  • [6] A. Mwembela, E.B. Konopleva, H.J. McQueen, Microstructural development in Mg alloy AZ31 during hot working, Scripta Materialia 37/11(1997) 1617-1842.
  • [7] W. Zhongjun, W. Zhaojing, Z. Jing, Superplastic deformation of a relatively coarse grained AZ80 magnesium alloy, Advanced Materials Letters 2/2 (2011) 113-117.
  • [8] W.J. Kim, W.G. Lee, Enhanced Superplasticity of 1 wt.%Ca-AZ80 Mg alloy with ultrafine grains, Advanced Materials Letters 64/16 (2010) 1759-1762.
  • [9] F. Abu-Farhaa, M. Khraisheh, On the superplastic forming of the AZ31 magnesium alloy, Proceedings of the 7th International Conference on Magnesium, Dresden, 2006.
  • [10] F. Abu-Farha, M. Khraisheh M, Analysis of superplastic deformation of AZ31 magnesium alloy, Advanced Engineering Materials 9/9 (2007) 777-783.
  • [11] M. Mabuchi, H. Iwasaki, K. Yanase, K. Higashi, Low temperature superplasticity in an AZ91 magnesium alloy, Scripta Materialia 36/6 (1997) 681-686.
  • [12] H. Watanabe, T. Mukai, K. Ishikawa, Y. Okanda, K. Higashi, Superplastic characteristics in a extruded AZ31 magnesium alloy, Journal of Japan Institute of Light Metals, 49/8 (1999) 401-404.
  • [13] T.C. Changa, J.Y. Wang, C.M. Ob, S. Lee, Grain refining of magnesium alloy AZ31 by rolling, Journal of Materials Processing Technology 140/1-3 (2003) 588-593.
  • [14] A. Bussiba, A.B. Artzy, A. Shtechman, S. Iftergan, M. Kupiec, Grain refinement of AZ31 and AZ60 Mg alloys-towards Superplasticity Studies, Materials Science and Engineering A 302 (2001) 56-62.
  • [15] H. Watanabe H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu, K. Higashi, Superplastic behavior in commercial wrought magnesium alloys, Materials Science Forum 350-351 (2000) 171-176.
  • [16] N.V. Thuramalla, M.K. Khraisheh, Effects of microstructural evolution on the stability of superplastic deformation, Proceedings of the 2nd MIT Conference on “Computational Fluid and Solid Mechanics”, 2003,683-686.
  • [17] C. Lv, T. Liu, D. Liu, S. Jiang, W. Zeng, Effect of heat treatment on tension-compression yield asymmetry of AZ80 magnesium alloy, Materials and Design 33 (2012) 529-533.
  • [18] C.J. Huang, C.M. Cheng, C.P. Chou, The Influence of aluminium content of AZ61 and AZ80 magnesium alloys on hot cracking, Materials and Manufacturing Processes 26 (2011) 1179-1187.
  • [19] Z.J. Wang, Influence of heat treatment condition on low cycle fatigue life of a rolled AZ80 magnesium alloy sheet, Advanced Materials Research 239-242 (2011) 1309-1312.
  • [20] G. Zheng Quan, T. Wan Ku, W.J. Song, B.S. Kang, The workability evaluation of wrought AZ80 magnesium alloy in hot compression, Materials and Design 32/4 (2011) 2462-2468.
  • [21] E. Doege, K. Droder, Sheet metal forming of wrought magnesium alloys-formability and process technology, Journal of Materials Processing Technology 115/1 (2001) 14-19.
  • [22] S. Yoshihara, H. Nishimura, H. Yamamoto, K. Manabe, Formability enhancement in magnesium alloy stamping using a local heating and cooling technique, circular cup deep drawing process, Journal of Materials Processing Technology 142/3 (2003) 609-613.
  • [23] F. Chen, T. Huang, C.K. Chang, Deep drawing of square cups with magnesium alloy AZ31 sheets, Journal of Machine Tools and Manufacture 43 (2003) 1553-1559.
  • [24] K. Droder, E. Doege, Processing of magnesium sheet metals by deep drawing and stretch forming, Materials Technology 7-8 (1997)19-23.
  • [25] S. Yoshihara, K. Manabe, H. Nishimura, Effect of Blank holder force control in deep drawing process of magnesium alloy sheet, Journal of Materials Processing Technology 170/3 (2005) 579-585.
  • [26] T.B. Huang, Y.A Tsai, F.K. Chen, Finite element analysis and formability of non-isothermal deep drawing of AZ31B sheets, Journal of Materials Processing Technology 177/1-3 (2006)142-145.
  • [27] L.F. Yuang, K.I. Mori, H. Tsuji H, Deformation behaviours of magnesium alloy AZ31 in cold deep drawing, Transactions of Nonferrous Metals Society of China 18/1 (2008) 86-91.
  • [28] K.F. Zhang, D.L. Yin, D.N. Wu, Formability of AZ31 magnesium alloy sheets at warm working conditions, International Journal of Machine Tools and Manufacture 46/11 (2006) 1276-1280.
  • [29] M. Jain, J. Allin, M.J. Bull, Deep drawing characteristics of automotive aluminium alloys, Materials Science and Engineering A 256/1-2 (1998) 69-82.
  • [30] Q.F. Chang, D.Y. Li, Y.H. Peng, X.Q. Zeng, Experminetal and numerical study of warm deep drawing of AZ31 magnesium alloy sheet, International Journal of Machine Tools and Manufacture 47/3-4 (2007) 436-443.
  • [31] H. Somekawa, M. Kohzu, S. Tanabe, K. Higashi, The press formability in magnesium alloy AZ31, Materials Science Forum 350-351 (2000) 177-182.
  • [32] G. Palumbo, D. Sorgente, L. Tricarico , S.H. Zhang, W.T. Zheng, Numerical and experimental investigations on the effect of the heating strategy and the punchspeed on the warm deep drawing of magnesium alloy AZ31, Journal of Materials Processing Technology 191 (2007) 342-346.
  • [33] M. Kohzu, T. Hironaka, S. Nakatsuka, N. Saito, F. Yoshida, T. Naka, H. Okahara, K. Higashi, Effect of texture of AZ31 magnesium alloy sheet on mechanical properties and formability at high strain rate, Materials transactions 48/4 (2007) 764-768.
  • [34] H. Watari, R. Paisarn, T. Haga, K. Noda K, K. Davey, N. Koga, Development of manufacturing of wrought magnesium alloy sheets by twin roll casting, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007)515-518.
  • [35] Z. Hua, H.G. Sheng, S. Bo, Z. Lei, K.D. Qiang, Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures, Journal of Materials Processing Technology 211/10 (2011) 1575-1580.
  • [36] H. Watanabe, T. Mukai, T. Ishikawa, Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties, Journal of Materials Science 39/4 (2004) 1477-1480.
  • [37] X.S. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, Improvement of formability of Mg-Al-Zn alloy sheet at low temperature using differential speed rolling, Journal of Alloys and Compounds 470/1-2 (2009) 263-268.
  • [38] K. Iwanaga, H. Tashiro, H. Okamoto, K. Shimizu, Improvement of formability from room temperature to warm temperature in AZ31 magnesium alloy, Journal of Materials Processing Technology 155-156 (2004) 1313-1316.
  • [39] Yi.S. Bohlen, J. Bohlen, F. Heinemann, F. Letzig, Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets, Acta Materialia 58/2 (2010) 592-605.
  • [40] U.F. Kocks, C.N. Tome, H.R. Wenk, Texture and anisotropy, Cambridge University Press, Cambridge, 1998.
  • [41] M.J. Philippe, Texture formation in hexagonal materials, Materials Science Forum 157-162 (1994)1337-1350.
  • [42] M.T. Perez-Prado, J.A. Del Valle, J.M. Contreras, O.A. Runao, Microstructural evolution during large strain hot rolling of an AM60 Mg alloy, Scripta Materialia 50/5 (2004) 661-665.
  • [43] H. Watanabe, T. Mukai, K. Ishikawa, Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy, Journal of Materials Processing Technology 182/1-3 (2007) 644-647.
  • [44] X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, Mechanical properties of Mg-Al-Zn alloy with a tilted basal texture obtained by differential speed rolling, Materials Science and Engineering A 488/1-2 (2008) 214-220.
  • [45] W.J. Kim, J.B. Lee, W.Y. Kim, H.T. Jeong, H.G. Jeong, Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling, Scripta Materialia 56/4 (2007) 309-312.
  • [46] J. Bohlen, M.R. Nurnberg, J.W. Senn, D. Letzig, S.R. Agnew, The texture and anisotropy of magnesium-zinc-rare earth alloy sheets, Acta Materialia 55/6 (2007) 2101-2112.
  • [47] N. Stanford, M. Barnett, Effect of composition on the texture and deformation behaviour of wrought Mg alloys, Scripta Materialia 58/3 (2008) 179-182.
  • [48] Y. Chino, M. Kado, M. Mabuchi, Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt% (0.035 at%) Ce, Materials Science and Engineering A 494/1-2 (2008) 343-349.
  • [49] Y. Chino, K. Sassa, M. Mabuchi, Texture and stretch formability of a rolled Mg-Zn alloy containing dilute content of Y, Materials Science and Engineering A 513-514 (2009) 394-400.
  • [50] R.K. Mishra, A.K. Gupta, P.R. Rao, A.K. Sachdev, A.M. Kumar, A.A. Luo, Influence of cerium on the texture and ductility of magnesium extrusions, Scripta Materialia 59/5 (2008) 562-565.
  • [51] L.M. Ren, S.H. Zhang, G. Palumbo, L. Tricarico, Warm deep drawing of magnesium alloy sheets-formability and process conditions, Journal of Engineering Manufacture 222/11 (2008) 1347-1354.
  • [52] F.K. Chen, T.B. Huang, C.K. Chang, Deep drawing of square cups with magnesium alloy AZ31 sheets, International Journal of Machine Tools and Manufacture 43 (2003) 1553-1559.
  • [53] D.V. Hai, S. Itoh, T. Sakai, S. Kamado, Y. Kojima, process for magnesium alloy sheet at elevated temperatures, Materials Transactions 49/5 (2008) 1101-1106.
  • [54] S. Yoshihara, B.J. MacDonald, H. Nishimura, H. Yamamoto, K. Manabe, Optimisation of magnesium alloy stamping with local heating and cooling using the finite element method, Journal of Materials Processing Technology 153-154 (2004) 319-322.
  • [55] F. Kaiser, D. Letzig, J. Bohlen, A. Styczynski, Ch. Hartig, K.U. Kainer, Anisotropic properties of magnesium sheet AZ31, Materials Science Forum 419-422 (2003) 315-320.
  • [56] H. Palaniswamy, G. Ngaile, T. Altan, Finite element simulations of magnesium alloy sheet forming at elevated temperatures, Journal of Materials Processing Technology 146/1 (2004) 52-60.
  • [57] D.B. Zhu, Newest progress on the springback’s study of plate forming, Journal Plastics Engineering 1 (2000) 11-17.
  • [58] Y.H. Moon, S.S. Kang, J.R. Cho, T.G. Kim, Effect of tool temperature on the reduction of the springback of aluminium sheets, Journal of Materials Processing Technology 132/1-3 (2003) 365-368.
  • [59] F. Ozturk, S. Toros, S. Kilic, M.H. Bas, Effects of cold and warm temperatures on springback of aluminium-magnesium alloy 5083-H111, Journal of Engineering Manufacture 223 (2009) 427-431.
  • [60] L. Marretta, R.D. Lorenzo, Influence of material properties variability on springback and thinning in sheet stamping processes A stochastic analysis, The International Journal of Advanced Manufacturing Technology 51/1-4 (2010) 117-134.
  • [61] L. Geng, R.H. Wagoner, Role of plastic anisotropy and its evolution on springback, International Journal of Mechanical Sciences 44/1 (2002) 123-148.
  • [62] X. Li, Y. Yang, Y. Wang, J. Bao, S. Li, 2002. Effect of the material hardening mode on the springback simulation accuracy of V-free bending, Journal of Materials Processing Technology 123/2 (2002) 209-211.
  • [63] T.J. Gau, L.G. Kinzel, A new model for springback prediction in which the bauschinger effect is considered, 43/8 (2001) 1813-1832
  • [64] H.Y. Yu, Variation of elastic modulus during plastic deformation and its influence on springback, Materials and Design 30/3 (2009) 846-850.
  • [65] S.H. Kim, M. Koc, Numerical investigations on springback characteristics of aluminium sheet metal alloys in warm forming conditions, Journal of Materials Processing Technology 204/1-3 (2008) 370-383.
  • [66] R.C. Picu, G. Vincze, F. Ozturk, J.J. Gracio, F. Barlat, A.M. Maniatty, Strain rate sensitivity of the commercial aluminium alloy AA5182-O, Materials Science and Engineering A 390/1-2 (2005) 334-343.
  • [67] I. Ragai, D. Lazim, J.A. Nemes, Anisotropy and springback in draw-bending of stainless steel 410, experimental and numerical study, Journal of Materials Processing Technology 166/1 (2005) 116-127.
  • [68] T. Hama, Y. Kariyazaki , K. Ochi, H. Fujimoto, H. Takuda, Springback characteristics of magnesium alloy sheet AZ31B in draw-bending, Materials Transactions 51/4 (2009) 685-693.
  • [69] H.J. Kim, S.C. Choi, K.T. Lee, H.Y. Kim, Experimental determination of forming limit diagram and springback characteristics of AZ31B Mg alloy sheets at elevated temperatures, Materials Transactions 49/5 (2008) 1112-1119.
  • [70] R.K. Verma, A. Haldar, Effect of normal anisotropy on springback, Journal of Materials Processing Technology 190/1-3 (2007) 300-304.
  • [71] S.L. Zang, A new model to describe effect of plastic deformation on elastic modulus of aluminum alloy, Transactions of Nonferrous Metals Society of China 16 (2006) 1314-1318.
  • [72] S.P. Keeler, W.A. Backofen, Plastic instability and fracture in sheets stretched over rigid punches, ASM Transactions Quarterly 56/1 (1963) 25-48.
  • [73] E. Hsu, J.E. Carsley, R. Verma, Development of forming limit diagrams of aluminum and magnesium sheet alloys at elevated temperatures, Journal of materials engineering and performance 17/3 (2008) 288-296.
  • [74] ASTM E 2218-02 Standard Test Method for Determining Forming Limit Curves.
  • [75] G. Palumbo, D. Sorgente, L. Tricarico, A numerical and experimental investigation of AZ31 Formability at elevated temperature using a constant strain rate test, Materials and Design 31/3 (2010) 1308-1316.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6dc42658-2d34-434f-bd1d-2ea0c57126d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.