PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Eichhornia Crassipes as a Bioadsorbent for the Removal of Methyl Orange and Methylene Blue Present in Residual Solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The textile industry is very important because its products are widely used by society, however, this activity has a great contribution to the contamination of water resources due to its effluents that contain large amounts of colorants, among which is the blue of methylene (MB) and methyl orange (MO) that can cause damage to the health of living being. For this reason the present study concerned the removal of these dyes by adsorption using Eichhornia Crassipes (Water lily) with different treatments. The results show that the chemisorption removal process using two sites per dye molecule having an exothermic nature for the water-treated lily and for the NaOH-treated lily is endothermic. The maximum adsorption capacities of 228.9 mg/g for MB (60 °C) and 155.38 mg/g (30 °C) for MO with the NaOH treatment were achieved. The SEM analysis shows that there are significant changes in the surface due to the treatments. The XRD patterns indicate that with the pretreatment with NaOH the crystallinity of WL increases while the treatment with water maintains the presence of amorphous cellulose. In the FTIR spectra, the bands corresponding to different functional groups such as lignin, cellulose and hemicellulose that participate in the adsorption of both dyes are observed.
Słowa kluczowe
Rocznik
Strony
193--211
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • UPIIG, del Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Col. Fraccionamiento Industrial Puerto, 36275 Silao, Guanajuato, Mexico
  • UPIIG, del Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Col. Fraccionamiento Industrial Puerto, 36275 Silao, Guanajuato, Mexico
  • Departamento de Ingeniería en Minas, Metalurgia y Geología, División de Ingenierías, Universidad de Guanajuato, Ex Hacienda. de San Matias S/N, San Matías, San Javier, 36020 Guanajuato, México
  • Politécnico Colombiano Jaime Isaza Cadavid, Carrera 48. El Poblado, No.7–151, Código Postal: 4932, Medellín, Colombia
  • Ciencias Químicas, Universidad de Zacatecas, Campus UAZ siglo XXI, Carretera Zacatecas–Guadalajara Km. 6, Col. Ejido “La Escondida”, C.P. 98160, Zacatecas, México
  • UPIIG, del Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Col. Fraccionamiento Industrial Puerto, 36275 Silao, Guanajuato, Mexico
  • UPIIG, del Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Col. Fraccionamiento Industrial Puerto, 36275 Silao, Guanajuato, Mexico
Bibliografia
  • 1. Acosta-Rodríguez I., Rodríguez-Pérez A., Pacheco-Castillo N.C., Enríquez-Domínguez E., Cárdenas-González J.F., Martínez-Juárez V.M. 2021. Removal of cobalt (II) from waters contaminated by the biomass of Eichhornia Crassipes. Water, 13(13), 1725–1735.
  • 2. Al-Baldawi I.A., Abdullah S.R.S., Almansoory A.F., Ismail N.I., Hasan H.A., Anuar N. 2020. Role of Salvinia molesta in biodecolorization of methyl orange dye from water. Sci. Rep., 10, 13980.
  • 3. Alguacil F.J., López F.A. 2021. Organic dyes versus adsorption processing. Molecules, 26(18), 5440–5462.
  • 4. Amalraj R., Ramsenthil R., Durai G., Jayakumar R., Palaniraj R. 2021. Dyes removal using novel sorbents – A review. J. Pharm. Res. Int., 33(45A), 355–382.
  • 5. Anastopoulos I., Hosseini-Bandegharaei A., Fu J., Mitropoulos A.C., Kyzas, G.Z. 2018. Use of nanoparticles to dye adsorption: Review. J. Dispersion Sci. Technol., 39(6), 836–847.
  • 6. Azam K., Raza R., Shezad N., Shabir M., Yang W., Ahmad N., Shafiq I., Akhter A., Hussain M. 2020. Development of recoverable magnetic mesoporous carbon adsorbent for removal of methyl blue and methyl orange from wastewater. J. Environ. Chem. Eng., 8(5), 104220
  • 7. Block I., Günter C. Duarte Rodrigues A., Paasch S., Hesemann P., Taubert A. 2021. Carbon adsorbents from spent coffee for removal of methylene blue and methyl orange from water. Materials, 14(14), 3996–4013.
  • 8. Bożęcka A., Orlof-Naturalna M., Kopeć M. 2021. Methods of dyes removal from aqueous environment. J. Ecol. Eng., 22(9), 111–118.
  • 9. Bronzato G.R.F., Ziegler S.M., Silva R.C., Cesarino I., Leão A.L. 2017. Characterization of the pre-treated biomass of Eichhornia Crassipes (water hyacinth) for the second-generation ethanol production, Mol. Cryst. Liq. Cryst., 655(1), 224–235.
  • 10. Deng D., Lamssali M., Aryal N., Ofori-Boadu A., Jha M.K., Samuel R.E. 2020. Textiles wastewater treatment technology: A review. Water Environ. Res., 92, 1805–1810.
  • 11. El-Zawahry M.M., Abdelghaffar F., Abdelghaffar R.A., Mashaly, H.M. 2016. Functionalization of the aquatic weed water hyacinth Eichhornia Crassipes by using zinc oxide nanoparticles for removal of organic dyes effluent. Fibers Polym., 17(2), 186–193.
  • 12. Filice S., Bongiorno C., Libertino S., Compagnini G., Gradon L., Iannazzo D., La Magna A., Scalese S. 2021. Structural characterization and adsorption properties of dunino raw halloysite mineral for dye removal from water. Materials, 14(13), 3676–3796.
  • 13. Geed S., Samal K., Tagade A. 2019. Development of adsorption-biodegradation hybrid process for removal of methylene blue from wastewater. J. Environ. Chem. Eng., 7(6), 103439.
  • 14. Giri A.K., Patel R., Mandal S. 2012. Removal of Cr (VI) from aqueous solution biomass-derived by Eichhornia Crassipes root activated carbon. Chem. Eng. J., 185–186, 71–81
  • 15. Ghosh G.C., Chakraborty T.K., Zaman S., Nahar M.N., Kabir, A.H.M.E. 2020. Removal of methyl orange dye from aqueous solution by a low cost activated carbon prepared from mahagoni (Swietenia mahagoni) Bark. Pollut., 6(1), 171–184.
  • 16. Guan Y., Cao W., Guan H., Lei X., Wang X., Tu Y., Marchetti A., Kong X. (2018). A novel polyalcoholcoated hydroxyapatite for the fast adsorption of organic dyes. Colloids Surf. A., 548, 85–91.
  • 17. Herrera-González A.M., Caldera-Villalobos M., Peláez-Cid A.A. (2019). Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite. J. Environ. Manage., 234, 237–244.
  • 18. Hou Y., Liang Y., Hu H., Tao Y., Zhou J., Cai J. 2021. Facile preparation of multi-porous biochar from lotus biomass for methyl orange removal: Kinetics, isotherms, and regeneration studies. Biores. Technol., 329, 124877.
  • 19. Jedynak K., Repelewicz M., Kurdziel K., Wideł D. 2021. Mesoporous carbons as adsorbents to removal of methyl orange (anionic dye) and methylene blue (cationic dye) from aqueous solutions. Desalin. Water Treat., 220, 363–379.
  • 20. Joaquín-Medina E., Patiño-Saldivar L., Ardila-A.A.N., Salazar-Hernández M., Hernández J.A. 2021. Bioadsorption of methyl orange and methylene blue contained in water using as bioadsorbent Natural Brushite (nDCPD). Tecnología y Ciencias del Agua, 12(3), 304–347.
  • 21. Joudi M., Nasserlah H., Hafdi H., Mouldar J., Hatimi B., El-Mhammedi M.A, Bakasse M. 2020. Synthesis of an efficient hydroxyapatite–chitosan–montmorillonite thin film for the adsorption of anionic and cationic dyes: adsorption isotherm, kinetic and thermodynamic study. SN Appl. Sci., 2, 1078–1091.
  • 22. Kadhom M., Albayati N., Alalwan H., Al-Furaiji M. 2020. Removal of dyes by agricultural waste. Sustainable Chem. Pharm., 16, 100259
  • 23. Kakhki R.M., Rahni S.Y., Karimian A. 2021. Removal of methyl orange from aqueous solutions by a novel, highly efficient and low-cost copper-modified nanoalum. Inorg. Nano-Meter. Chem., 51(9), 1291–1296.
  • 24. Kalam A., Rahman L., Sarker A., Ahmed N., Mustofa M., Awal A. 2021. Efficient removal of toxic textile dye using petiole part (stem) of Nymphaea alba. Pollut., 7(3), 643–656.
  • 25. Lacin D., Aroguz A.Z. 2020. Kinetic studies on adsorption behavior of methyl orange using modified halloysite, as an eco-friendly adsorbent. SN Appl. Sci., 2, 2091–2113.
  • 26. Liu Q., Li Y., Chen H., Lu J., Yu G., Mӧslang M., Zhou Y. 2020. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J. Hazard. Mater., 382, 121040
  • 27. Márquez C.O., García V.J., Guaypatin J.R., Fernández-Martínez F., Ríos A.C. 2021. Cationic and anionic dye adsorption on a natural clayey composite. Appl. Sci., 11(11), 5127–5149.
  • 28. Mishra S., Maiti A. 2017. The efficiency of Eichhornia Crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ. Sci. Pollut. Res., 24, 7921–7937.
  • 29. Nurhadi M., Widiyowati I.I., Wirhanuddin W., Chandren S. 2019. Kinetic of adsorption process of sulfonated carbon derived from Eichhornia Crassipes in the adsorption of methylene blue dye from aqueous solution. Bull. Chem. React. Eng. Catal., 14(1), 17–27.
  • 30. Othman N.H., Alias N.H., Shahruddin M.Z., Abu Bakar N.F., Nik Him N.R., Lau W. J. 2018. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J. Environ. Chem. Eng., 6(2), 2803–2811.
  • 31. Panneerselvam B., Priya K.S. 2021. Phytoremediation potential of water hyacinth in heavy metal removal in chromium and lead contaminated water. Int. J. Environ. Anal. Chem., 4(2), 347–353.
  • 32. Patel S. 2012. Threats, management and envisaged utilizations of aquatic weed Eichhornia Crassipes: an overview. Rev. Environ. Sci. Biotechnol., 11, 249–259.
  • 33. Patiño-Saldivar L., Hernández J.A., Ardila A., Salazar-Hernández M., Talavera A., Hernández Soto, R. 2021. Cr (III) removal capacity in aqueous solution in relation to the functional groups present in the orange peel (Citrus sinensis). Appl. Sci., 11(14), 6346–6361
  • 34. Prasad R., Sharma D., Yadav K.D., Ibrahim H. 2021. Eichhornia Crassipes as biosorbent for industrial wastewater treatment: Equilibrium and kinetic studies. Can. J. Chem. Eng., 100, 439.
  • 35. Priya E.S., Selvan P.S. 2017. Water hyacinth (Eichhornia Crassipes) – An efficient and economic adsorbent for textile effluent treatment – A review. Arabian J. Chem., 10, 3548–3558.
  • 36. Rios A.G., Matos L.C., Manrique Y.A., Loureiro J.M., Mendes A., Ferreira A.F.P. 2020. Adsorption of anionic and cationic dyes into shaped MCM-41. Adsorption, 26, 75–88.
  • 37. Rashid N.S.A., Naim M.N., Che Man H., Abu Bakar N.F., Mokhtar M.N. 2019. Evaluation of surface water treated with lotus plant; Nelumbo nucifera. J. Environ. Chem. Eng., 7(3), 103048.
  • 38. Rıza Kıvanç M., Ozay O., Ozay H., Ilgin P. 2020. Removal of anionic dyes from aqueous media by using a novel high positively charged hydrogel with high capacity. J. Disper. Sci. Technol., 1000–1015.
  • 39. Saini A., Barman S., Datta D., Sharma K., Kumar K., Goyal N. 2020. Kinetic and thermodynamic study of thionine dye adsorption by peanut hull. Indian Chem. Eng., 63(5), 522–532.
  • 40. Sharma R., Saini H., Paul D.R., Chaudhary S., Nehra S.P. 2021. Removal of organic dyes from wastewater using Eichhornia Crassipes: a potential phytoremediation option. Environ. Sci. Pollut, Res., 28, 7116–7122.
  • 41. Soltani A., Faramarzi M., Parsa S.A.M. 2021. A review on adsorbent parameters for removal of dye products from industrial Wastewater. Water Qual. Res. J., 56(4), 181–193.
  • 42. Srivatsav P., Bhargav B.S., Shanmugasundaram V., Arun J., Gopinath K.P., Bhatnagar A. 2020. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: A review. Water, 12, 3561–3587.
  • 43. Tabinda A.B., Arif R.A., Yasar A., Baquir M., Rasheed R., Ahmood A., Iqbal, A. 2019. Treatment of textile effluents with Pistia stratiotes, Eichhornia Crassipes and Oedogonium sp. Int. J. Phytorem., 21(10), 939–943.
  • 44. Tara N., Siddiqui S.I., Rathi G., Chaudhry S.A., Inamuddin, Asiri A.M. 2020. Nano-engineered adsorbent for the removal of dyes from water: A review. Curr. Anal. Chem., 16(1), 14–40.
  • 45. Tsade Kara H., Anshebo S.T., Sabir F.K., Workineh G.A. 2021. Removal of methylene blue dye from wastewater using periodiated modified nanocellulose. Int. J. Chem. Eng., 1–16
  • 46. Uddin J., Ampiaw R.E., Lee W. 2021. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere, 284, 131314.
  • 47. Wanyonyi W.C., Onyari J.M., Shiundu P.M. 2013. Adsorption of methylene blue dye from aqueous solutions using Eichhornia Crassipes. Bull. Environ. Contam. Toxicol., 91, 362–366.
  • 48. Xu X., Yu J., Liu C., Yang G., Shi L., Zhuang X. 2021. Xanthated chitosan/cellulose sponges for the efficient removal of anionic and cationic dyes. React. Funct. Polym., 160, 104840.
  • 49. Zaghloul A., Zerbet M., Benhiti R., Abali M., Ichou A.A., Soudani A., Chiban M., Sinan F. 2021. Kinetic, isotherm, and thermodynamic studies of the removal of methyl orange by synthetic clays prepared using urea or coprecipitation. Euro-Mediterranean J. Environ. Integr., 6, 18–27.
  • 50. Zhang B., Wu Y., Cha L. 2019. Removal of methyl orange dye using activated biochar derived from pomelo peel wastes: performance, isotherm, and kinetic studies. J. Dispersion Sci. Technol., 41(1), 125–136.
  • 51. Zhang C., Liu L., Zhao M., Rong H., Xu Y. 2018. The environmental characteristics and applications of biochar. Environ. Sci. Pollut. Res., 25, 21525–21534.
  • 52. Zhu H., Zou H. 2021. Characterization of algae residue biochar and its application in methyl orange wastewater treatment. Water Sci. Technol., 84(12), 3716–3725.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6db94f82-b67c-49a7-9edc-7f298308fd81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.