PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separation of Contaminants in The Freeze/Thaw Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
These studies examined the concept of concentration and purification of several types of wastewater by freezing and thawing. The experiments demonstrated that freezing of contaminated liquid contributed to concentration of contaminants in solution as well as significant concentration and agglomeration of solid particles. A high degree of purification was achieved for many parameters. The results of comparative laboratory tests for single and multiple freezing are presented. It was found that there was a higher degree of concentration of pollutants in wastewater frozen as man-made snow than in bulk ice. Furthermore, the hypothesis that long storage time of liquid as snow and sufficient temperature gradient metamorphism allows for high efficiency of the concentration process was confirmed. It was reported that the first 30% of the melted liquid volume contained over 90% of all impurities. It gives great opportunities to use this method to concentrate pollutants. The results revealed that the application of this process in full scale is possible. Significant agglomeration of solid particles was also noted. Tests with clay slurry showed that repeated freezing and thawing processes significantly improve the characteristics of slurry for sedimentation and filtration.
Rocznik
Strony
249--264
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Northern Watertek Corporation, 1796 Courtwood Crescent, Ottawa, Ontario, K2C 2B5, Canada
autor
  • Northern Watertek Corporation, 1796 Courtwood Crescent, Ottawa, Ontario, K2C 2B5, Canada
  • Laval University, 1030 avenue de la Médecine, Québec, G1V 0A6, Canada
Bibliografia
  • 1. Baker R.A., 1967. Trace organic contaminant concentration by freezing – I; Low inorganic aqueous solutions. Water Res., 1, 61-77. DOI: 10.1016/0043-1354(67)90064-4.
  • 2. Baker R.A., 1967a. Trace organic contaminant concentration by freezing – II; Inorganic aqueous solutions. Water Res., 1, 97-113. DOI: 10.1016/0043-1354(67)90078-4.
  • 3. Baker R.A., 1969. Trace organic contaminant concentration by freezing – III; Ice washing. Water Res., 3, 717- 730. DOI:10.1016/0043-1354(69)90013-X.
  • 4. Beier N., Sego D., Donahue R., Biggar K., 2007. Trickle-freeze separation of contaminants from saline wastewater. Int. J. Min. Reclam. Environ., 21, 144-155. DOI: 10.1080/17480930701197643.
  • 5. Bales R.C., 1989. Ion elution through shallow homogeneous snow. Water Resour. Res., 25, 1869-1877. DOI: 10.1029/WR025i008p01869.
  • 6. Brimblecombe P., Tranter M., Abrahams P. W., Blackwood I., Davies T.D., Vincent C.E., 1985. Relocation and preferential elution of acidic solute through the snowpack of a small, remote, high-altitude Scottish catchment. Ann. Glaciol., 7, 141–147.
  • 7. Brimblecombe P., Clegg S.L., Davies T.D., Shooter D., Tranter M., 1987. Observations of the preferential loss of major ions from melting snow and laboratory ice. Water Res., 21, 1279–1286. DOI: 10.1016/0043-1354(87)90181-3.
  • 8. Chen L.C., Chian C.Y., Chen L.C., Yen P.S., Chu C.P., Lee J.C., Lee S.F., 2001. High-speed sludge freezing. Water Res., 35, 3502-3507. DOI: 10.1016/S0043-1354(01)00048-3.
  • 9. Chian C.Y., Chen L.C., Yen P.S., Chu C.P., Lee J.C., Lee S.F., Chen T.H., 2002. Sludge freezing at high speed.
  • 10. Drying Technol., 20, 1019-1033. DOI: 10.1081/DRT-120003775.
  • 11. Christon M., Burns P.J., Sommerfeld R.A., 1994. Quasi-steady temperature gradient metamorphism in idealized, dry snow. Numer. Heat Transfer, Part A, 25, 259-278. DOI: 10.1080/10407789408955948.
  • 12. Cisse J., Bolling G.F., 1971. A study of the trapping and rejection of insoluble particles during the freezing of water. J. Cryst. Growth, 10, 67-76. DOI: 10.1016/0022-0248(71)90047-9.
  • 13. Colbeck S.C., 1980. Thermodynamics of snow metamorphism due to variations in curvature. J. Glaciol., 26(94), 291-301.
  • 14. Corte A.E., 1962. Vertical migration of particles in front of a moving freezing plane. J. Geophys. Res., 67, 1085- 1090. DOI: 10.1029/JZ067i003p01085.
  • 15. Cragin J.H., 1993. Elution of ions from melting snow. Army Cold Regions Research and Engineering Laboratory.
  • 16. CRREL Report, 93-8.
  • 17. Cragin J.H., 1995. Exclusion of sodium chloride from ice during freezing. 52nd Eastern Snow Conference. Toronto, Ontario, Canada.
  • 18. Dawson R..F., Sego D.C., Pollock G.W., 1999. Freeze-thaw dewatering of oil sands fine tails. Can. Geotech. J., 36, 587-598. DOI: 10.1139/t99-028.
  • 19. Di Iaconi C., Lopez A., Ramadori R., Di Pinto A.C., Passino R., 2002. Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR). Water Res., 36, 2205-2214. DOI: 10.1016/S0043-1354(01)00445-6.
  • 20. Geo W., Smith D.W., Sego D.C., 2004. Treatment of pulp mill and oil sands industrial wastewaters by the partial spray freezing process. Water Res., 38, 579-584. DOI: 10.1016/j.watres.2003.10.053.
  • 21. Gao W., Shao Y., 2009. Freeze concentration for removal of pharmaceutically active compounds in water. Desalin., 249, 398-402. DOI: 10.1016/j.desal.2008.12.065.
  • 22. Gao W., 2011. Freezing as a combined wastewater sludge pretreatment and conditioning method. Desalin., 268, 170-173. DOI: 10.1016/j.desal.2008.12.065.
  • 23. Gay G., Lorain O., Aouni A., Aurelle Y., 2003. Wastewater treatment by radial freezing with stirring effects. Water Res., 37, 2520-2524. DOI: 10.1016/S0043-1354(03)00020-4. FTFC (Fine Tailings Fundamentals Consortium), 1995. Advances in Oil Sands Tailings Research. Alberta Department of Energy. Oil Sands and Research Division. III-29.
  • 24. Halde R., 1979. Concentration of impurities by progressive freezing. Water Res., 14, 575-580. DOI: 10.1016/0043-1354(80)90115-3.
  • 25. Huber D., Palmateer G., 1985. Snowfluent - A join experimental project between Southwest Region of the Ministry of the Environment and Delta Engineering in the storage and renovation of sewage effluent by conversion to snow. MOE Report. Ontario, Canada.
  • 26. Johannessen M., Dale T., Gjessing E.T., Henriksen A., Wright R.F., 1975. Acid precipitation in Norway: The regional distribution of contaminants in snow and the concentration processes during snowmelt. Proceedings of the Isotopes and impurities in snow and ice symposium. Grenoble, 1975. Int. Ass. Hydrol. Sci. Publ. 118, 116-120.
  • 27. Johannessen M., Henriksen A., 1978. Chemistry of snow meltwater: Changes in concentration during melting. Water Resour. Res., 14, 615-619. DOI: 10.1029/WR014i004p00615.
  • 28. Kyprianidou-Leodidou T.C., Botsaris G.D., 1990. Freeze concentration of aqueous solutions, In: Myerson A.S., Toyokura K. (Eds.), Crystallization as a separation process. 438, Chapter 27, ACS Symposium Ser.
  • 29. Marbouty D., 1980. An experimental study of temperature gradient metamorphism in snow. J. Glaciol., 26, 303-
  • 30. 311.
  • 31. Meyer T., Wania F., 2011. Modelling the elution of organic chemicals from a melting homogeneous snow pack.
  • 32. Water Res., 45, 3627-3637. DOI: 10.1016/j.watres.2011.04.011.
  • 33. Meyer T., Lei D.Y., Wania F., 2006. Measuring the release of organic contaminants from melting snow under controlled conditions. Environ. Sci. Technol., 40, 3320-3326. DOI: 10.1021/es060049q.
  • 34. Meyer T., Lei D.Y., Muradi I., Wania F., 2009. Organic contaminant release from melting snow. 1. Influence of chemical partitioning. Environ. Sci. Technol., 43, 657-662. DOI: 10.1021/es8020217.
  • 35. Montusiewicz A. , Lebiocka M., Rożej A., Zacharska E., Pawłowski L., 2010. Freezing/thawing effects on anaerobic digestion of mixed sewage sludge. Bioresour. Technol., 101, 3466-3473. DOI: 10.1016/j.biortech.2009.12.125.
  • 36. Muller M., Sekoulov I., 1992. Wastewater reuse by freeze concentration with falling film reactor. Water Sci. Technol., 26, 1475-1482.
  • 37. Nakamura A., Okada R., 1976. The coagulation of particles in suspension by freezing-thawing. Colloid. Polym. Sci., 254, 718-725.
  • 38. Parker P.J., Collins A.G., 1999. Ultra-rapid freezing of water treatment residuals. Water Res., 33, 2239-2246. DOI: 10.1016/S0043-1354(98)00449-7.
  • 39. Pinzer B.R., Schnebeli M., Kaempfer T.U., 2012. Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography. Cryosphere, 6, 1141-1155. DOI: 10.5194/tc-6-1141-2012.
  • 40. Reed S., Bouzoun J., Medding W., 1986. A rational method for sludge dewatering via freezing. Journal (Water Pollution Control Federation), 58(9), 911-916. Available at: http://www.jstor.org/stable/25043077/.
  • 41. Sego, D.C., 1996. Use of Natural freeze-thaw processes to separate and treat mine wastewater. Proceedings from IWC-96.
  • 42. Sommerfeld R. A., LaChapelle E., 1970. The classification of snow metamorphism. J. Glaciol., 9, 3-17. DOI: 10.3198/1970JoG9-55-3-18.
  • 43. Szpaczynski J.A., White J.A., 2000a. Experimental studies on the application of natural process of snow metamorphism for concentration and purification of liquid wastes. WEF & Purdue University, Industrial Wastes Technical Conference. May 21, 2000, St. Louis, Missouri, USA.
  • 44. Szpaczynski J.A., White J.A., 2000b. Efficiency of landfill leachate treatment by freeze crystallization and natural process of snow metamorphism. 1st Intercontinental Landfill Research Symposium. Luleå, December 11-13, 2000.
  • 45. Taft R.A., 1965. The advanced waste treatment research program. U.S. Department of Health, Education, and Welfare.
  • 46. Tao T., Peng X.F., Lee D.J., 2006a. Interaction between wastewater-sludge floc and moving ice front. Chem. Eng. Sci., 61, 5369–5376. DOI: 10.1016/j.ces.2006.04.019.
  • 47. Tao T., Peng X.F., Lee D.J., Hsu J.P., 2006b. Micromechanics of wastewater sludge floc: Force-deformation relationship at cyclic freezing and thawing. J. Colloid Interface Sci., 298, 860-868. DOI: 10.1016/j.jcis.2006.01.002.
  • 48. Tatarniuk Ch., Donahue R., Sego D., 2009. Freeze separation of salt contaminated melt water and sand wash water at snow storage and sand recycling facilities. Cold Reg. Sci. Technol., 57, 61-66. DOI: 10.1016/j.coldregions.2009.03.001.
  • 49. Tranter M., Tsiouris S., Davies T. D., Jones G. H., 1992. A laboratory investigation of the leachating of solute from snow pack by rainfall. Hydrol. Processes, 6, 169-178. DOI: 10.1002/hyp.3360060205.
  • 50. Vesilind P.A., Martel J.C., 1990. Freezing of water and wastewater sludge. J. Environ. Eng., 116, 854-862. DOI: 10.1061/(ASCE)0733-9372(1990)116:5(854).
  • 51. Vol’khin V.V., Ponomarev E.I., 1965. Effect of freezing on the properties of coagulated metal hydroxides.Kolloidnyi Zhurnal, 27(1), 14-18.
  • 52. Wakisaka M., Shirai Y., Sakashita S., 2001. Ice crystallization in a pilot-scale freeze wastewater treatmentsystem. Chem. Eng. Process., 40, 201-208. DOI:10.1016/S0255-2701(00)00112-4.
  • 53. White J.A., 1998. USA, Patent #5,726,405.
  • 54. White J.A., Lefebvre P., 1997. Snowfluent® - the use of atomizing freeze crystallization on municipal, agricultural and hog manure wastes. Conference, World-Wise’97, Selkirk, Manitoba.
  • 55. Wright K.R., 1976. Sewage effluent turned to snow: Provides storage, removes pollutants. J. Civil Eng. – ASCE, 88-89.
  • 56. Zapf-Gilje, S., Russell, D.S., Mavinic, D.S., 1986. Concentration of impurities during melting of snow made from secondary sewage effluent. Water Sci. Technol., 18(2), 151-156.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6db89710-dd06-4190-818a-17df33b23d6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.