Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Copper have always been an important material and incorporation of elements into copper for property enhancement. Bronze is a relevant cuprous alloy which is important for many industrial and automotive applications like bearings and machineries. The present research is directed towards the fabrication and tribological analysis of regular bronze (Cu-6Sn) and metal matrix composites reinforced with varying particle sized SiC ceramic reinforcement (30, 35 and 40 μm). The developed specimens were subjected to wear analysis according to ASTM standards, to identify the tribological properties utilizing a pin on disk tribometer. It was noted that the wear rates of developed MMC’s phenomenally decremented with an increase in size of SiC particle reinforcement. Also, the test parameters were influential in altering the wear rates to notable margins. The standard scanning electron microscopy techniques aided in identifying the influence of adhesive wear on the specimen surface.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
133--138
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
autor
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
- Department of Industrial and Material Science, Chalmers University of Technology, Sweden
autor
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
autor
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
autor
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
autor
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
autor
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
Bibliografia
- [1] Tjong, S.C. & Ma, Z.Y. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R Reports. 29(3), 49-113. DOI: 10.1016/S0927-796X(00)00024-3.
- [2] Krishnan, R.U. et al.(2019). Development of bronze metal matrix composite for automobile and marine applications. Materials Science Forum. 969 MSF, 415-420. DOI: 10.4028/www.scientific.net/MSF.969.415.
- [3] Hooker, J.A. & Doorbar P.J. (2000) Metal matrix composites for aeroengines. Materials Science and Technology. 16(7-8), 725-731, DOI: 10.1179/026708300101508414.
- [4] Paul, C. & Sellamuthu, R. (2014). The effect of Sn content on the properties of surface refined Cu-Sn bronze alloys. Procedia Engineering. 97, 1341-1347. DOI: 10.1016/j.proeng.2014.12.414.
- [5] Öksüz, K.E. (2015). A Study on Al2O3/SiC/B4C Reinforced Cu-Sn Matrix Composite by Warm Compaction Powder Metallurgy. Advanced Materials Research. 1128, 123-126. DOI: 10.4028/www.scientific.net/amr.1128.123.
- [6] Asnavandi, M., Ghorbani, M. & Kahram, M. (2013). Production of Cu-Sn-graphite-SiC composite coatings by electrodeposition. Surface and Coatings Technology. 216, 207-214. DOI: 10.1016/j.surfcoat.2012.11.042.
- [7] Gautam, R.K., Ray, S., Jain, S.C. & Sharma, S.C. (2008). Tribological behavior of Cu-Cr-SiCp in situ composite. Wear. 265(5-6), 902-912. DOI:10.1016/j.wear.2008.01.023.
- [8] Korkut, M.H. (2004). Effect of particulate reinforcement on wear behaviour of aluminium matrix composites. Materials Science and Technology. 20, 73-81.
- [9] Radhika, N., Karthik, R., Gowtham, S. & Ramkumar, S. (2019). Synthesis of Cu-10Sn/SiC Metal Matrix Composites and Experimental Investigation of its Adhesive Wear Behaviour. Silicon. 11(1), 345-354. DOI: 10.1007/s12633-018-9848-6.
- [10] Bhatija, K.A. & Radhika, N. (2017). Studies on sliding wear characteristics of aluminium LM25/silicon dioxide functionally graded composite and optimisation of parameters using response surface methodology. Materwissenschaft und Werkstofftechnik. 48(6), 600-610. DOI: 10.1002/mawe.201600560.
- [11] Nithesh, R., Radhika, N. & Shiam Sunder, S. (2017). Mechanical properties and adhesive scuffing wear behavior of stir cast Cu-Sn-Ni/Si3N4 composites. Journal of Tribology. 139(6). DOI: 10.1115/1.4036185.
- [12] ASTM Compass, “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus1,” 2020. https://compass.astm.org/EDIT/html_annot.cgi?G99+17#s00008 (accessed Apr. 17, 2020).
- [13] Akshay, M.C., Aravind Senan, V.R., Vignesh Surej, K.S., Akhil, B., Shankar, K.V. & Shankar, B. (2019). Determination on the effect of Ti addition on the microstructural, mechanical and wear behavior of Cu–6Sn alloy in as-cast condition. Transactions of the Indian Institute of Metals. DOI: 10.1007/s12666-019-01835-5.
- [14] Rosenberger, M.R., Schvezov, C.E. & Forlerer, E. (2005). Wear of different aluminum matrix composites under conditions that generate a mechanically mixed layer. Wear. 259(1-6), 590-601. DOI: 10.1016/j.wear.2005.02.003.
- [15] Shankar, K.V., Ghosh, K.J.A., Sudhin, C.B., Pai, A.S., Biju, A. & Sriram, K.R. (2020). Investigating the significance of SiC particle size on the mechanical properties of Cu-6Sn-SiC composite. Int. J. Materials Engineering Innovation. 11(4), 323–337.
- [16] Mahesh Kumar, V. & Venkatesh, C.V. (2018). Effect of ceramic reinforcement on mechanical properties of aluminum matrix composites produced by stir casting process. Materials Today. Proceesings. 5(1), 2466-2473. DOI: 10.1016/j.matpr.2017.11.027.
- [17] Hou, K.H., Ger, M.D., Wang, L.M. & Ke, S.T. (2002). The wear behaviour of electro-codeposited Ni-SiC composites. Wear. 253(9-10), 994-1003. DOI: 10.1016/S0043-1648(02)00222-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6db729c0-6eb2-444e-95b1-4ef236f52946