PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detailed LNAPL plume mapping using electrical resistivity tomography inside an industrial building

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detailed characterization of light non-aqueous phase liquid contaminant plume is essential for mapping remediation scope effectively. Electrical resistivity tomography is increasingly popular for delineating the geometry of subsurface contamination. In this study, the low resolution and limited penetration depth drawbacks from traditional survey arrays were resolved with optimized arrays generated using ‘Compare R’ method. Numerical example first proved its efficiency in locating contaminated areas under restricted survey space. The presence of ethylbenzene inside a manufacturing building has shown high resistive anomaly, and it has already leaked into deep locations from resistivity results. However, the transport of ethylbenzene was limited due to surrounding low permeable clay layer. The boundaries of the contaminant plume were further quantified using interpolated 3D resistivity results, which help to refine the remediation scope. The reconstructed scope was only 1/3 of the one from traditional borehole data interpolation, resulting in a more precise remediation cost estimate. In the end, we conclude the advantage of enhanced resolution and refined cost of remediation strategy by applying optimized array in contaminated site survey.
Czasopismo
Rocznik
Strony
1651--1663
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
  • School of Civil Engineering, Shandong University, Jinan 250061, China
autor
  • Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
autor
  • School of Civil Engineering, Shandong University, Jinan 250061, China
autor
  • School of Civil Engineering, Shandong University, Jinan 250061, China
autor
  • Shandong Institute for Production Quality Inspection, Jinan 250102, China
autor
  • School of Civil Engineering, Shandong University, Jinan 250061, China
Bibliografia
  • 1. Aal GZA, Slater LD, Atekwana EA (2006) Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics 71:H13–H24. https://doi.org/10.1190/1.2187760
  • 2. Abbas M, Jardani A, Soueid AA, Revil A, Brigaud L, Bégassat P, Dupont JP (2017) Redox potential distribution of an organic-rich contaminated site obtained by the inversion of self-potential data. J Hydrol 554:111–127. https://doi.org/10.1016/j.jhydrol.2017.08.053
  • 3. Acworth RI, Jorstad LB (2006) Integration of multi-channel piezometry and electrical tomography to better define chemical heterogeneity in a landfill leachate plume within a sand aquifer. J Contam Hydrol 83:200–220. https://doi.org/10.1016/j.jconhyd.2005.11.007
  • 4. Arato A, Wehrer M, Biró B, Godio A (2014) Integration of geophysical, geochemical and microbiological data for a comprehensive small-scale characterization of an aged LNAPL-contaminated site. Environ Sci Pollut Res 21:8948–8963. https://doi.org/10.1007/s11356-013-2171-2
  • 5. Atekwana EA, Atekwana EA (2010) Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surv Geophys 31:247–283. https://doi.org/10.1007/s10712-009-9089-8
  • 6. Atekwana EA, Sauck WA, Werkema DD (2000) Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J Appl Geophys 44:167–180. https://doi.org/10.1016/S0926-9851(98)00033-0
  • 7. Baawain MS, Al-Futaisi AM, Ebrahimi A, Omidvarborna H (2018) Characterizing leachate contamination in a landfill site using time domain electromagnetic (TDEM) imaging. J Appl Geophys 151:73–81. https://doi.org/10.1016/j.jappgeo.2018.02.002
  • 8. Bellmunt F, Marcuello A, Ledo J, Queralt P (2016) Capability of cross-hole electrical configurations for monitoring rapid plume migration experiments. J Appl Geophys 124:73–82. https://doi.org/10.1016/j.jappgeo.2015.11.010
  • 9. Bernstone C, Dahlin T, Ohlsson T, Hogland W (2000) DC-resistivity mapping of internal landfill structures: two pre-excavation surveys. Environ Geol 39:360–371. https://doi.org/10.1007/s002540050015
  • 10. Bichet V, Grisey E, Aleya L (2016) Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Eng Geol 211:61–73. https://doi.org/10.1016/j.enggeo.2016.06.026
  • 11. Casado I, Mahjoub H, Lovera R, Fernández J, Casas A (2015) Use of electrical tomography methods to determinate the extension and main migration routes of uncontrolled landfill leachates in fractured areas. Sci Total Environ 506:546–553. https://doi.org/10.1016/j.scitotenv.2014.11.068
  • 12. Cassiani G, Kemna A, Villa A, Zimmermann E (2009) Spectral induced polarization for the characterization of free-phase hydrocarbon contamination of sediments with low clay content. Near Surf Geophys 7:547–562. https://doi.org/10.3997/1873-0604.2009028
  • 13. Chambers JE, Wilkinson PB, Wealthall GP, Loke MH, Dearden R, Wilson R, Allen D, Ogilvy RD (2010) Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation. J Contam Hydrol 118:43–61. https://doi.org/10.1016/j.jconhyd.2010.07.001
  • 14. Dahlin T, Bernstone C, Loke MH (2002) A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden. Geophysics 67(6):1692–1700. https://doi.org/10.1190/1.1527070
  • 15. De Donno G, Cardarelli E (2017) Tomographic inversion of time-domain resistivity and chargeability data for the investigation of landfills using a priori information. Waste Manag 59:302–315. https://doi.org/10.1016/j.wasman.2016.11.020
  • 16. Deng Y, Shi X, Xu H, Sun Y, Wu J, Revil A (2016) Quantitative assessment of electrical resistivity tomography for monitoring DNAPLs migration—comparison with high-resolution light transmission visualization in laboratory sandbox. J Hydrol 544:254–266. https://doi.org/10.1016/j.jhydrol.2016.11.036
  • 17. García-González JE, Ortega MF, Chacón E, Mazadiego LF, Miguel ED (2008) Field validation of radon monitoring as a screening methodology for NAPL-contaminated sites. Appl Geochem 23:2753–2758. https://doi.org/10.1016/j.apgeochem.2008.06.020
  • 18. Johansson S, Fiandaca G, Dahlin T (2015) Influence of non-aqueous phase liquid configuration on induced polarization parameters: conceptual models applied to a time-domain field case study. J Appl Geophys 123:295–309. https://doi.org/10.1016/j.jappgeo.2015.08.010
  • 19. Li X, Chen G, Zhang R, Zhu H, Fu J (2018) Simulation and assessment of underwater gas release and dispersion from subsea gas pipelines leak. Process Saf Environ 119:46–57. https://doi.org/10.1016/j.psep.2018.07.015
  • 20. Liao Q, Deng Y, Shi X, Sun Y, Duan W, Wu J (2018) Delineation of contaminant plume for an inorganic contaminated site using electrical resistivity tomography: comparison with direct-push technique. Environ Monit Assess. https://doi.org/10.1007/s10661-018-6560-3
  • 21. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x
  • 22. Loke MH, Wilkinson PB, Chambers JE (2010) Fast computation of optimized electrode arrays for 2D resistivity surveys. Comput Geosci 36:1414–1426. https://doi.org/10.1016/j.cageo.2010.03.016
  • 23. Loke MH, Wilkinson PB, Chambers JE, Strutt M (2014) Optimized arrays for 2D cross-borehole electrical tomography surveys. Geophys Prospect 62:172–189. https://doi.org/10.1111/1365-2478.12072
  • 24. Mao D, Revil A, Hort RD, Munakata-Marr J, Atekwana EA, Kulessa B (2015) Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: sandbox and field experiments. J Hydrol 530:1–14. https://doi.org/10.1016/j.jhydrol.2015.09.031
  • 25. Mao D, Lu L, Revil A, Zuo Y, Hinton J, Ren ZJ (2016) Geophysical monitoring of hydrocarbon-contaminated soils remediated with a bioelectrochemical system. Environ Sci Technol 50:8205–8213. https://doi.org/10.1021/acs.est.6b00535
  • 26. Mares R, Barnard HR, Mao D, Revil A, Singha K (2016) Examining diel patterns of soil and xylem moisture using electrical resistivity imaging. J Hydrol 536:327–338. https://doi.org/10.1016/j.jhydrol.2016.03.003
  • 27. Maurer H, Curtis A, Boerner DE (2010) Recent advances in optimized geophysical survey design. Geophysics 75:75A-177A. https://doi.org/10.1190/1.3484194
  • 28. Maurya PK, Rønde VK, Fiandaca G, Balbarini N, Auken E, Bjerg PL, Christiansen AV (2017) Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography—with correlation to ionic strength measured in screens. J Appl Geophys 138:1–8. https://doi.org/10.1016/j.jappgeo.2017.01.019
  • 29. Mohanakrishna G, Abu-Reesh IM, Kondaveeti S, Al-Raoush RI, He Z (2018) Enhanced treatment of petroleum refinery wastewater by short-term applied voltage in single chamber microbial fuel cell. Bioresour Technol 253:16–21. https://doi.org/10.1016/j.biortech.2018.01.005
  • 30. Naudet V, Revil A, Rizzo E, Bottero JY, Begassat P (2004) Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrol Earth Syst Sci 8(1):8–22. https://doi.org/10.5194/hess-8-8-2004
  • 31. Ogilvy R, Meldrum P, Chambers J, Williams G (2002) The use of 3D electrical resistivity tomography to characterise waste and leachate distribution within a closed landfill, Thriplow, UK. J Environ Eng Geophys 7(1):11–18. https://doi.org/10.4133/JEEG7.1.11
  • 32. Park S, Yi M, Kim J, Shin SW (2016) Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea. J Appl Geophys 135:1–7. https://doi.org/10.1016/j.jappgeo.2016.07.004
  • 33. Power C, Gerhard JI, Karaoulis M, Tsourlos P, Giannopoulos A (2014) Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation. J Contam Hydrol 162:27–46. https://doi.org/10.1016/j.jconhyd.2014.04.004
  • 34. Revil A, Karaoulis M, Johnson T, Kemna A (2012) Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 20:617–658. https://doi.org/10.1007/s10040-011-0819-x
  • 35. Sheng Y, Zhang X, Zhai X, Zhang F, Li G, Zhang D (2018) A mobile, modular and rapidly-acting treatment system for optimizing and improving the removal of non-aqueous phase liquids (NAPLs) in groundwater. J Hazard Mater 360:639–650. https://doi.org/10.1016/j.jhazmat.2018.08.044
  • 36. Stummer P, Maurer H, Green AG (2004) Experimental design: electrical resistivity data sets that provide optimum subsurface information. Geophysics 69(1):120–139. https://doi.org/10.1190/1.1649381
  • 37. Tsai Y, Chou Y, Wu Y, Lee C (2020) Noninvasive survey technology for LNAPL-contaminated site investigation. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125002
  • 38. Wang T, Chen C, Tong L, Chang P, Chen Y, Dong T, Liu H, Lin C, Yang K, Ho C, Cheng S (2015) Applying FDEM, ERT and GPR at a site with soil contamination: a case study. J Appl Geophys 121:21–30. https://doi.org/10.1016/j.jappgeo.2015.07.005
  • 39. Wilkinson PB, Meldrum PI, Chambers JE, Kuras O, Ogilvy RD (2006) Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations. Geophys J Int 167:1119–1126. https://doi.org/10.1111/j.1365-246X.2006.03196.x
  • 40. Wilkinson PB, Loke MH, Meldrum PI, Chambers JE, Kuras O, Gunn DA, Ogilvy RD (2012) Practical aspects of applied optimized survey design for electrical resistivity tomography. Geophys J Int 189:428–440. https://doi.org/10.1111/j.1365-246X.2012.05372.x
  • 41. Xia T, Dong Y, Mao D, Meng J (2021) Delineation of LNAPL contaminant plumes at a former perfumery plant using electrical resistivity tomography. Hydrogeol J 29(03):1189–1201. https://doi.org/10.1007/s10040-021-02311-5
  • 42. Yang B, Li H, Wu B, Du P, Li F (2013) Engineering remediation techniques and its application for volatile organic compounds-contaminated sites. J Environ Eng Technol 3(01):78–84. https://doi.org/10.3969/j.issn.1674-991X.2013.01.014
  • 43. Zume JT, Tarhule A, Christenson S (2006) Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma. Groundw Monit Remediat 26:62–69. https://doi.org/10.1111/j.1745-6592.2006.00066.x
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6db68971-2b39-4ef1-97a0-387cf6c161ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.