PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis of thermal stress in Cu2O coating synthesized on Cu substrate

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper aims to find the magnitude and nature of thermal residual stresses that occur during cooling of a copper sample with a thermally synthesized oxide layer of Cu2O. Design/methodology/approach: Thermo-mechanical analysis was performed by the finite element method using Ansys Software. The results of thermal analysis were used to study the resulting stress-strain state of the thin film/coating system after cooling. Findings: Based on the modeling results, the paper determined the most stress-strain areas of the sample with a coating, which are the free edges of the interfaces between the copper substrate and the Cu2O oxide layer. Research limitations/implications: The main limitations of the study are the use of certain simplifications in the condition setup, for instance, uniform cooling of the thin film/coating system, homogeneity and isotropy of substrate and thin film materials, invariance of their properties with temperature changes, etc. Practical implications: The results obtained can be used to control the stress-strain state of the thin film/coating system and prevent deformations and destruction of thin-film structures during their production and operation of products with them. Originality/value: The study of new promising methods for the formation of oxide nanostructures, for instance in a plasma environment, requires a sufficient theoretical basis in addressing the origin and development of stresses.
Rocznik
Strony
58--65
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Department of Aircraft Engines Manufacturing Technologies, Faculty of Aircraft Engines, National Aerospace University «Kharkiv Aviation Institute», Kharkiv, 61070, Ukraine
Bibliografia
  • [1] Y. Mu, M. Han, J. Li, J. Liang, J. Yu, Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries, Carbon 173 (2021) 477-484. DOI: https://doi.org/10.1016/j.carbon.2020.11.027
  • [2] Y. Suchikova, S. Vambol, V. Vambol, N. Mozaffari, N. Mozaffari, Justification of the most rational method for the nanostructures synthesis on the semiconductors surface, Journal of Achievements in Materials and Manufacturing Engineering 92/1-2 (2019) 19-28. DOI: https://doi.org/10.5604/01.3001.0013.3184
  • [3] W. Matysiak, T. Tański, M. Zaborowska, Manufacturing process and optical properties of zinc oxide thin films as photoanode in DSSC, Journal of Achievements in Materials and Manufacturing Engineering 86/1 (2018) 33-40. DOI: https://doi.org/10.5604/01.3001.0011.6016
  • [4] K. Szmajnta, M.M. Szindler, M. Szindler, Synthesis and magnetic properties of Fe2O3 nanoparticles for hyperthermia application, Archives of Materials Science and Engineering 109/2 (2021) 80-85. DOI: https://doi.org/10.5604/01.3001.0015.2627
  • [5] L.A. Dobrzański, The significance of the nanostructural components on the properties of the nanoengineering materials, Journal of Achievements in Materials and Manufacturing Engineering 88/2 (2018) 55-85. DOI: https://doi.org/10.5604/01.3001.0012.6150
  • [6] O.H. Sabr, N.H. Al-Mutairi, A.Y. Layla, Characteristic of low-density polyethylene reinforcement with nano/micro particles of carbon black: a comparative study, Archives of Materials Science and Engineering 110/2 (2021) 49-58. DOI: https://doi.org/10.5604/01.3001.0015.4312
  • [7] O. Baranov, M. Košiček, G. Filipič, U. Cvelbar, A deterministic approach to the thermal synthesis and growth of 1D metal oxide nanostructures, Applied Surface Science 566 (2021) 150619. DOI: https://doi.org/10.1016/j.apsusc.2021.150619
  • [8] B. Guo, M. Košiče, J. Fu, Y. Qu, G. Lin, O. Baranov, J. Zavašni, Q. Cheng, K. Ostrikov, U. Cvelbar, Single- Crystalline Metal Oxide Nanostructures Synthesized by Plasma-Enhanced Thermal Oxidation, Nanomaterials 9/10 (2019) 1405. DOI: https://doi.org/10.3390/nano9101405
  • [9] S.H. Mohamed, K.M. Al-Mokhtar, Characterization of Cu2O/CuO nanowire arrays synthesized by thermal method at various temperatures, Applied Physics A 124 (2018) 493. DOI: https://doi.org/10.1007/s00339-018- 1914-9
  • [10] T. Tański, W. Matysiak, Optical properties of PVP/ZnO composite thin films, Journal of Achievements in Materials and Manufacturing Engineering 82/1 (2017) 5-11. DOI: https://doi.org//10.5604/01.3001.0010.2071
  • [11] A. Bute, S. Jena, S. Kedia, D.V. Udupa, K. Singh, D. Bhattacharya, M.H. Modi, N. Chand, S. Sinha, Boron carbide thin films deposited by RF-PECVD and PLD technique: A comparative study based on structure, optical properties, and residual stress, Materials Chemistry and Physics 258 (2021) 123860. DOI: https://doi.org/10.1016/j.matchemphys.2020.123860
  • [12] X. Zhang, Y. Wu, B. Xu, H. Wang, Residual stresses in coating-based systems, part I: Mechanisms and analytical modeling, Frontiers of Mechanical Engineering in China 2 (2007) 1-12. DOI: https://doi.org/10.1007/s11465-007-0001-2
  • [13] Y. Song, X. Zhuan, T.J. Wang, X. Chen, Evolution of thermal stress in a coating/substrate system during the cooling process of fabrication, Mechanics of Materials 74 (2014) 26-40. DOI: https://doi.org/10.1016/j.mechmat.2014.03.006
  • [14] G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G.B. Thompson, E. Barthel, G.L. Doll, C.E. Murray, C.H. Stoessel, L. Martinu, Review Article: Stress in thin films and coat-ings: Current status, challenges, and prospects, Journal of Vacuum Science and Technology A 36/2 (2018) 020801. DOI: https://doi.org/10.1116/1.5011790
  • [15] A.A. Abubakar, A.F.M. Arif, K.S. Al-Athel, S.S. Akhtar, J. Mostaghimi, Modeling Residual Stress Development in Thermal Spray Coatings: Current Status and Way Forward, Journal of Thermal Spray Technology 26/6 (2017) 1115-1145. DOI: https://doi.org/10.1007/s11666-017-0590-1
  • [16] N. Liu, J. Sun, D. Wu, Elastic constants and thermos-dynamic properties of Cu, Cu2O and CuO from first- principles calculations, Advanced Materials Research 335-336 (2011) 328-332. DOI: https://doi.org/10.4028/www.scientific.net/AMR.335- 336.328
  • [17] I. Levchenko, S. Xu, O. Baranov, O. Bazaka, E.P. Ivanova, K. Bazaka, Plasma and Polymers: Recent Progress and Trends, Molecules 26/13 (2021) 4091. DOI: https://doi.org/10.3390/molecules26134091
  • [18] V.V. Kulyk, Z.A. Duriagina, B.D. Vasyliv, V. Vavrukh, T.M. Kovbasiuk, M. Holovchuk, Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia, Archives of Materials Science and Engineering 109/2 (2021) 65-79. DOI: https://doi.org/10.5604/01.3001.0015.2625
  • [19] X. Zhang, Z. Yan, Y. Zhou, Z. Zhong, Thermal Residual Stress and Failure Probability of Functionally Grade Ni-YSZ Anode of Solid Oxide Fuel Cells Using A Finite Element Analysis, ECS Transactions 103/1 (2021) 2217-2231. DOI: https://doi.org/10.1149/10301.2217ecst
  • [20] Y. Kahraman, Investigation on Thermal Residual Stress of Borided Steel: Finite Element Simulation, Emerging Materials Research 9/4 (2020) 1066-1075. DOI: https://doi.org/10.1680/jemmr.20.00158
  • [21] Q.M. Yu, L. Cen, Y. Wang, Numerical study of residual stress and crack nucleation in thermal barrier coating system with plane model, Ceramics International 44/5 (2018) 5116-5123. DOI: https://doi.org/10.1016/j.ceramint.2017.12.112
  • [22] X. Tian, S. Xiong, Y. Zhang, K. Zhang, Simulation of thermal stress in-ion beam sputtered Ta2O5/SiO2 multilayer coatings on different substrates by finite element analysis, Surface and Coatings Technology 362 (2019) 225-233. DOI: https://doi.org/10.1016/j.surfcoat.2019.02.004
  • [23] T.W.B. Riyadi, D. Setiadh, A.D.Anggono, W.A. Siswanto, H.H. Al-Kayiem, Analysis of mechanical and thermal stresses due to TiN coating of Fe substrate by physical vapor deposition, Forces in Mechanics 4 (2021) 100042. DOI: https://doi.org/10.1016/j.finmec.2021.100042
  • [24] H.-Ch. Chen, Ch.-Y. Huang, P.-W. Cheng, Stress mechanisms of SiO2 and Nb2O5 thin films sputtered on flexible substrates investigated by finite element method, Surface and Coatings Technology 344 (2018) 449-457. DOI: https://doi.org/10.1016/j.surfcoat.2018.03.051
  • [25] M. Elhoriny, M. Wenzelburger, A. Killinger, R. Gadow, Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings, Journal of Thermal Spray Technology 26/4 (2017) 735-744. DOI: https://doi.org/10.1007/s11666-017-0538-5
  • [26] K. Huang, W. Wang, Q. Yu, L. Hao, J. Mi, S. Li, H. Liu, S. Li, J. Liu, J. Wang, Simulation of the Residual Stress of the Y2O3/Al2O3 Composite Deuterium Permeation Barrier under Thermal Shock International Journal of Photoenergy 2021 (2021) 6684802. DOI: https://doi.org/10.1155/2021/6684802
  • [27] J. Haider, M. Rahman, B. Corcoran, M.S.J. Hashmi, Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis, Journal of Materials Processing Technology 168/1 (2005) 36-41. DOI: https://doi.org/10.1016/j.jmatprotec.2004.09.093
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6db0259f-08c7-423a-ae5b-6493ef771008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.