Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article deals with a current state-of-art of fluid solid interaction (FSI) – the new branch of continuum physics. Fluid-solid interaction is a new quality of modeling physical processes of continuum mechanics, it can be described as the interaction of various (so far treated separately from the point of view of mathematical modeling) physical phenomena occurring in continuous media systems. The most correct is the simultaneous application of the laws of the given physical disciplines, which implies that fluid solid interaction is a subset of multi-physical applications where the interactions between these subsets are exchanged on the surface in interconnected systems. Our purpose is to extend the fluid solid interaction aplications into new phenomena what follow from the industrial needs and inovative thechnologies. Selecting the various approaches, we prefer the arbitraty lagrangean-eulerian description within the bulk of fluid/solid domain and a new sort of advanced boundary condition on a surface of common contact.
Czasopismo
Rocznik
Tom
Strony
75--96
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
- General Electric Power, Stoczniowa 2, 82-300 Elbląg, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
- Anwil Grupa Orlen, Toruńska 222, 87-800 Włocławek, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
- Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
- Energa S.A. Grunwaldzka 472, 80-309 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
- Agencja Rynku Energii, Bobrowiecka 3, 00-728 Warszawa, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdańsk, Poland
Bibliografia
- [1] Badur J., Ziółkowski P., Zakrzewski W., Sławinski D., Kornet S., Kowalczyk T., Hernet T., Piotrowski R., Felincjancik J., Ziółkowski P.J.: An advanced thermal-FSI approach to flow heating/coolin. J. Phys. Conf. Ser. 530(2014), 340–370.
- [2] Kornet S., Ziółkowski P., Józwik P., Ziółkowski P., Stajnke M., Badur J.: Thermal-FSI modeling of flow and heat transfer in a heat exchanger based on minichanels. J. Power Technol. 97(2017), 5, 373–381.
- [3] Zienkiewicz O.C., Taylor R.L.: The Finite Element Method: Vol. 1 (5th Edn.). Butterworth-Heinemann, Oxford, 2000.
- [4] Schäfer M., Sieber G., Sieber R., Teschauer I.: Coupled fluid-solid problems: Examples and reliable numerical simulation. In: Trends in Computational Structural Mechanics (W.A. Wall, Ed.), CIMNE, Barcelona 2001, 654–692.
- [5] Axisa F.: Modelling of Mechanical Systems – Fluid-Structure Interaction. Elsevier, Berlin 2007.
- [6] Bazilevs Y., Takizawa K., Tezduyar T.E.: Computational Fluid-Structure Interaction: Methods and Applications. John Wiley & Sons, 2013.
- [7] Benson D.J., Souli M.: Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation. Springer-Verlag, 2010.
- [8] Bodnar T., Galdi G.P., Necasova S.: Fluid-Structure Interaction and Biomedical Applications. Springer-Verlag, 2014.
- [9] Peric D., Dettmer W.G.: A computational strategy for interaction of fluid flow with spatial structures. In: Proc. 5th Int. Conf. on Computational of Shell and Spatial Structures, IASS-IACM, Bochum, 2005.
- [10] Ziółkowski P.J., Ochrymiuk T., Eremyev V.: Cont. Mech. Termodyn. 33(2021), 2301–2314.
- [11] Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Meth. for Heat Fluid Fl. 28(2018), 454–480.
- [12] Ziółkowski P, Badur J., Ziółkowski P.J.: An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure-Brayton cycle advanced according to Szewalski’s idea. Energy 185(2019), 763–786.
- [13] Badur J., Ziółkowski P., Kornet S., Kowalczyk T., Banas K., Bryk M., Ziółkowski P.J., Stajnke M.: Enhanced energy conversion as a result of fluid-solid interaction in micro-and nanoscale. J. Theor. Appl. Mech. 56(2018), 1, 329–332.
- [14] Kowalczyk T, Badur J., Bryk M.: Energy and exergy analysis of hydrogen production combined with electric energy generation in a nuclear cogeneration cycle. Energ. Convers. Manage. 198(2019), 203–224.
- [15] Badur J., Bryk M.: Accelerated start-up of the steam turbine by means of controlled cooling steam injection. Energy 184(2019), 334–356.
- [16] Bryk M., Kowalczyk T., Ziółkowski P., Badur J.: The thermal effort during marine steam turbine flooding with water. AIP Conf. Proc. 2077(2019), 1, 020009.
- [17] Kraszewski B., Bzymek G., Ziółkowski P., Badur J.: Extremal thermal loading of a bifurcation pipe. AIP Conf. Proc. 2077(2019), 1, 020030.
- [18] Dudda W., Banaszkiewicz M., Ziółkowski P.J.: Validation plastic model with hardening of St12t. AIP Conf. Proc. 2077(2019), 020016.
- [19] Szwaba R., Ochrymiuk T., Lewandowski T., Czerwinska J.: Experimental investigation of microscale effects in perforated plate aerodynamics. J. Fluids Eng. 135(2013), 12.
- [20] Badur J., Ziółkowski P., Kowalczyk T., Ziółkowski P.J., Stajnke M., Bryk M., Kraszewski B.: In: Proc. 6th Conf.e on Nano- and Micromechanics, Rzeszów, 3–7 July 2019.
- [21] Badur J., Karcz M., Lemanski M., Nastałek L.: Enhancement Transport Phenomena in the Navier-Stokes Shell-like Slip Layer. Computer Model. Eng. Sci. 73(2011), 299–310.
- [22] Banas K., Badur J.: Influence of strength differential effect on material effort of a turbine guide vane based on thermoelastoplastic analysis. J. Therm. Stress. 40(2017), 1368–1385.
- [23] Kornet S., Badur J.: Infuence of turbulence RANS models on heat transfer coefficients and stress distribution during thermal-FSI analysis of power turbine guide vane of helicopter turbine engine PZL-10W taking into account convergence of heat flux. Prog. Comput. Fluid Dyn. 17(2017), 352–360.
- [24] Ziółkowski P., Kowalczyk T., Kornet S., Badur J.: On low-grade waste heat utilization from a supercritical steam power plant using an ORC-bottoming cycle coupled with two sources of heat. Energ. Convers. Manage. 146(2017), 158–173.
- [25] Ziółkowski P., Badur J.: On Navier slip and Reynolds transpiration numbers. Arch. Mech. 70(2018), 269–300.
- [26] Ziółkowski P., Badur J.: Navier number and transition to turbulence. J. Phys. Conf. Ser. 530(2014), 1–8.
- [27] Czechowicz K, Badur J, Narkiewicz K.: Two-way FSI modelling of blood flow through CCA accounting on-line medical diagnostics in hypertension. J. Phys. Conf. Ser. 530(2014), 1–8.
- [28] Badur J., Lemanski M., Kowalczyk T., Ziółkowski P., Kornet P.: Zerodimensional robust model of an SOFC with internal reforming for hybrid energy cycles. Energy 158(2018), 128–138.
- [29] Badur J., Ziółkowski P.J., Ziółkowski P.: On the angular velocity slip in nanoflows. Microfluid Nanofluid 19(2015), 191–198.
- [30] Badur J., Ziółkowski P., Sławinski D., Kornet S.: An approach for estimation of water wall degradation within pulverized-coal boilers. Energy 92(2015), 142–152.
- [31] Felicjancik J., Ziółkowski P., Badur J.: An advanced thermal-FSI approach of an evaporation of air heat pump. Trans. Inst. Fluid-Flow Mach. 129(2015), 111–141.
- [32] Badur J., Stajnke M., Ziółkowski P., Józwik P., Bojar Z., Ziółkowski P.J.: Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al. Arch. Thermodyn. 3(2019), 3–26.
- [33] Badur J., Ziółkowski P., Kornet S., Stajnke M., Bryk M., Banas K., Ziółkowski P.J.: The effort of the steam turbine caused by a flood wave load. AIP Conf. Proc. 1822(2017), 1, 020001.
- [34] Badur J., Bryk M., Ziółkowski P., Sławinski D., Ziółkowski P.J., Kornet S., Stajnke M.: On a comparison of Huber–Mises–Hencky with Burzynski- Pecherski equivalent stresses for glass body during nonstationary thermal load. AIP Conf. Proc. 1822(2017), 1, 020002.
- [35] Banaszkiewicz M.: On-line monitoring and control of thermal stresses in steam turbine rotors. Appl. Therm. Eng. 94(2016), 763–776
- [36] Ochrymiuk T.: Numerical analysis of microholes film/effusion cooling effectiveness. J. Therm. Sci. 26(2017), 5, 459–464.
- [37] Ochrymiuk T.: Numerical prediction of film cooling effectiveness over flat plate using variable turbulent Prandtl number closures. J. Therm. Sci. 25(2016), 3, 280– 286.
- [38] Ochrymiuk T.: Numerical investigations of the 3D transonic field and heat transfer at the over-tip casing in a HP-turbine stage. Appl. Therm. Eng. 103(2016), 411–418.
- [39] Froissart M., Ziolkowski P., Dudda W., Badur J.: Heat exchange enhancement of jet impingement cooling with the novel humped-cone heat sink. Case Stud. Therm. Eng. 28(2021), 1, 101445101445.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6da934cd-a275-4a28-8e92-346dc351fcb3