PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Beneficiation potential of a low-grade coal from the Emalahleni (Witbank) coalfield

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The challenge of coal depletion has, among other resolutions, forced countries such as South Africa which depend heavily on coal-generated electricity to consider low-grade coal to meet their energy requirements. The Emalahleni Coalfield has an abundance of low-grade coal in-situ and in discards obtained from the No. 4 seam. This research thus seeks to give a technical assessment of the beneficiation potential of such coal for use in power stations linked to the coalfield. To that end, gravimetric and flotation beneficiation techniques were used, and their demineralisation capacities were assessed using physicochemical and petrographic analysis techniques. The results obtained showed that demineralisation of the coal was possible; with 29.1 and 33.6% ash obtained for an ~50% mass yield from gravimetric and flotation beneficiation techniques, respectively, against a thermal ash content requirement of 25–34% for coal-generated electricity.
Rocznik
Strony
849--859
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Mineral Processing Research Group, School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa
  • Mineral Processing Research Group, School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa
  • Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, School of Engineering, University of South Africa, Johannesburg, South Africa
Bibliografia
  • AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) D4239-18e1., 2018. Standard test method for sulfur in the analysis sample of coal and coke using high-temperature tube furnace combustion. ASTM International.
  • ARGIZ, C., SANJUAN, M.A., and MENENDEZ, E., 2017. Coal bottom ash for Portland cement production. Adv. Mater. Sci. Eng. 6068286.
  • BHATTACHARYA, S., MAHESHWARI, A., PANDA, M., 2016. Coal cleaning operations: The question of near gravity material. Trans. Indian Inst. Met., 69, 157–172.
  • BAHRAMI, A., GHORBANI, Y., MIRMOHAMMADI, M., SHEYKHI, B., KAZEMI, F., 2018. The beneficiation of tailing of coal preparation plant by heavy-medium cyclone. Int. J. Coal Sci. Technol., 5(3), 374–384.
  • CAIRNCROSS, B., 2001. An overview of the Permian (Karoo) coal deposits of Southern Africa. J. Afr. Earth. Sci. 33, 529–562.
  • CASTRO, A., DE BRUM, I.A.S., 2017. Fine particles flotation of the Moatize coal/Mozambique. AIP Conference Proceedings 1902(1), 020014.
  • CHARY, G.H.V.C., GUPTA, A., DASTIDAR, M.G., 2015. Oil agglomeration of coal fines in continuous mode of operation. Part. Sci. Technol., 33, 17–22.
  • DEPARTMENT OF ENERGY., 2019. Energy Sources: Coal | Department: Energy | Republic of South Africa [www document]. http://www.energy.gov.za/files/coal_frame.html (accessed 4.15.19)
  • DHAWAN, H., SHARMA, D.K., 2019. Advances in the chemical leaching (inorgano-leaching), bioleaching and desulphurisation of coals. Int. J. Coal Sci. Technol., 6(2), 169–183.
  • ESKOM., 2019. Fact Sheets-4. Supply of water and coal [www document]. http://financialresults.co.za/2012/eskom_ar2012/fact-sheets/004.php (accessed 4.26.19).
  • ESKOM., 2020. Eskom heritage website. [www document]. http://www.eskom.co.za/sites/heritage/Pages/default.aspx (accessed 6.22.20)
  • FALCON, R., HAM, A. 1988. The characteristics of South African coals. J. South Afr. Inst. Min. Metall., 88, 145–161.
  • FOURIE, P., VAN DER WALT, P., FALCON, L. 1980. The beneficiation of fine coal by dense-medium cyclone. J. South Afr. Inst. Min. Metall., 80, 357–361.
  • GALVIN, K.P., IVESON, S.M., 2013. Chapter 10 - Cleaning of coarse and small coal, in Osborne (Ed.) The coal handbook: Towards cleaner production. Woodhead Publishing, pp. 263–300.
  • JEFFREY L.S., 2005. Characterization of the coal resources of South Africa. J. South Afr. Inst. Min. Metall., 105, 95–102.
  • MALUMBAZO, N., 2016. Type, distribution and use of coal in South Africa. Presentation: 35th International Geological Conference GIFT Workshop, Capetown. https://static2.egu.eu/media/filer_public/ab/bf/abbffe4a-ec58-44a6-aac7b9527aae0782/9_-_malumbazo.pdf (accessed 4.26.19).
  • MESHRAM, P., SINHA, M.K., SAHU, S., PANDEY, B., 2012. Chemical beneficiation of low-grade coal-A review. 16th International Conference on Non-Ferrous Metals, 1–13.
  • MESHRAM, P., PUROHIT, B.K., SINHA, M.K., SAHU, S.K., PANDEY, B.D., 2015. Demineralization of low-grade coal-A review. Renewable Sustainable Energy Rev., 41, 745–761.
  • MILLER, B.G., 2017. 4-Introduction to coal utilization technologies, in Miller, B.G. (Ed.), Clean coal engineering technology (2nd Edition). Butterworth-Heinemann, pp.147–229.
  • MOHR, S.H., EVANS, G.M., 2009. Forecasting coal production until 2100. Fuel., 88(11), 2059–2067.
  • OPPERMAN, D., NEBBE, S., POWER, D., 2002. Flotation at Goedehoop Colliery. J. South Afr. Inst. Min. Metall., 102, 405–409.
  • OZGEN, S., TURKSOY, V.O., SABAH, E., ORUC, F., 2009. Process development studies on recovery of clean coal from ultra-fine hard coal tailings using enhanced gravity separator. Can. J. Chem. Eng., 87(5), 715–725.
  • RACKLEY, S. A., 2010. Chapter 3 - Power generation fundamentals, in S. A. Rackley (Eds.), Carbon capture and storage (1st Edition) (pp 29-64) Butterworth-Heinemann.
  • SCOTT, I., NAPIER-MUNN, T., 1992. A dense medium cyclone model based on the pivot phenomenon. Trans. Inst. Min. Metall., Sect. C. 101, C61–C76.
  • SINGH, J.P., KUMAR, S., MOHAPATRA, S.K., 2020. Chemical treatment of low-grade coal using Taguchi Approach. Part. Sci. Technol. 38(1), 73–80.
  • SOKOLOVIC, J., MISKOVIC, S., 2018. The effect of particle size on coal flotation kinetics: A review. Physicochem. Probl. Miner. Process., 54(4), 1172–1190.
  • SOUTH AFRICAN NATIONAL STANDARDS (SANS) 1928., 2009. Solid mineral fuels-determination of gross calorific value by the bomb calorific method, and calculation of net calorific value. (ISO 1928:2009).
  • SOUTH AFRICAN NATIONAL STANDARDS (SANS) 7404-3., 2016. Methods for the petrographic analysis of coals-Part 3: Method of determining maceral group composition. (ISO 7404-3:2009).
  • SNYMAN, C.P., BOTHA, W.J., 1993. Coal in South Africa. Geology and development in Southern Africa. J. Afr. Earth. Sci., 16(1), 171–180.
  • STEYN, M., MINNITT, R., 2010. Thermal coal products in South Africa. J. South Afr. Inst. Min. Metall., 110, 593–599
  • SWANEPOEL, C., 2012. Fine coal processing developments in Anglo American Thermal Coal South Africa in Klima, M.S., Arnold, B.J., Bethell, P.J. (Eds.) Challenges in Fine Coal Processing, Dewatering, and Disposal, (pp. 95–121). Society for Mining, Metallurgy, and Exploration (SME).
  • WAGNER, J., MALUMBAZO, N., FALCON, R.M.S., 2018. Applied organic petrography, in Southern African coals and carbons: Definitions and applications of organic petrology (1st Edition) (pp. 58–79). Struik Nature.
  • WORLD COAL ASSOCIATION., 2015. Coal market and pricing. [www document]. https://www.worldcoal.org/coal/coal-market-pricing
  • WILLS, B.A., FINCH, J.A., 2016. Chapter 11—Dense medium separation (DMS), in B. A. Wills, J. A. Finch (Eds.), Wills’ mineral processing technology (8th Edition) (pp. 245–264). Butterworth-Heinemann.
  • XING, Y., GUI, X., PAN, L., PINCHASIK, B.-E., CAO, Y., LIU, J., KAPPL, M., BUTT, H.J., 2017. Recent experimental advances for understanding bubble-particle attachment in flotation. Adv. Colloid Interface Sci., 246, 105–132.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6da4a75a-205b-458e-a3aa-4cfb2b5a8383
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.