Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the effects of electron beam irradiation on the mechanical and tribological properties of polyetheretherketone (PEEK), with particular focus on modifications resulting from the application of Litol-24 lubricant. Samples of pre-treated PEEK were irradiated at doses of 100, 200, 400, and 600 kGy using the ILU-10 linear accelerator. Comprehensive analyses were conducted, including thermogravimetric analysis (TGA) to assess thermal stability, X-ray diffraction (XRD) to observe structural changes, and the impact of irradiation on microhardness. Tribological performance was evaluated using the ball-on-disc method. Results indicate that irradiation decreases microhardness by approximately 19% and modifies tribological behavior in a dose-dependent manner. TGA results showed subtle shifts in decomposition onset temperatures, with a reduction of about 10°C post-irradiation, while XRD revealed a 12% decrease in crystallinity, affecting mechanical properties. Further investigations demonstrated that lubrication, particularly under high-load conditions, could enhance PEEK’s operational characteristics post-irradiation. The study underscores the critical role of lubricants in improving the wear resistance and durability of PEEK, making it suitable for high-stress applications in mechanical engineering and manufacturing sectors. The analysis highlights the potential of integrating electron irradiation into existing material processing workflows to improve PEEK's properties, thereby extending its utility across various industrial applications. This approach offers a promising avenue for optimizing the performance and longevity of PEEK components, particularly in environments subject to extreme mechanical stresses.
Wydawca
Rocznik
Tom
Strony
121--131
Opis fizyczny
Bibliogr. 42 poz., fig., tab.
Twórcy
autor
- Engineering Center, Shakarim University, Fizlulturnaya str. 4V, Semey, Kazakhstan
- PlasmaScience LLP, Gogol str. 7G, Oskemen, Kazakhstan
autor
- Engineering Center, Shakarim University, Fizlulturnaya str. 4V, Semey, Kazakhstan
autor
- Engineering Center, Shakarim University, Fizlulturnaya str. 4V, Semey, Kazakhstan
autor
- PlasmaScience LLP, Gogol str. 7G, Oskemen, Kazakhstan
- INNOTECHMASH Engineering Center, Gogol str. 7G, Oskemen, Kazakhstan
autor
- Engineering Center, Shakarim University, Fizlulturnaya str. 4V, Semey, Kazakhstan
autor
- Engineering Center, Shakarim University, Fizlulturnaya str. 4V, Semey, Kazakhstan
- INNOTECHMASH Engineering Center, Gogol str. 7G, Oskemen, Kazakhstan
Bibliografia
- 1. Skirbutis G., Dzingutė A., Masiliūnaitė V., et al. A review of PEEK polymer’s properties and its use in prosthodontics. Stomatologija. 2017, 19, 19–23. Available from: https://pubmed.ncbi.nlm.nih.gov/29243680/.
- 2. Mir A.H., Charoo M.S. Friction and wear characteristics of polyetheretherketone (PEEK): A review. IOP Conf Ser Mater Sci Eng. 2017, 561, 012051. https://dx.doi.org/10.1088/1757-899x/561/1/012051
- 3. Zol S.M., Alauddin M.S., Said Z., et al. Description of poly (aryl-ether-ketone) materials (PAEKs), polyetheretherketone (PEEK), and polyetherketoneketone (PEKK) for application as a dental material: a materials science review. Polymers. 2023, 15, 2170. https://dx.doi.org/10.3390/polym15092170
- 4. Kobayashi T., Rikukawa M., Sanui K., et al. Proton-conducting polymers derived from poly (ether-etherketone) and poly (4-phenoxybenzoyl-1,4-phenylene). Solid State Ion. 1998, 106, 219–225. https://dx.doi.org/10.1016/s0167-2738(97)00512-2
- 5. Andrade T.F., Wiebeck H., Sinatora A. Effect of surface finishing on friction and wear of Poly-Ether-Ether-Ketone (PEEK) under oil lubrication. Polimeros. 2016, 26, 336–342. https://dx.doi.org/10.1590/0104-1428.2183
- 6. Greco A.C., Erck R., Ajayi O., et al. Effect of reinforcement morphology on high-speed sliding friction and wear of PEEK polymers. Wear. 2011, 271, 2222–2229. https://dx.doi.org/10.1016/j.wear.2011.01.065
- 7. Altstaedt V., Werner P., Sandler J. Rheological, mechanical and tribological properties of carbon-nanofiber reinforced poly (ether ether ketone) composites. Polimeros. 2023, 13, 218–222. https://dx.doi.org/10.1590/S0104-14282003000400005
- 8. Zhang G., Schlarb A.K. Correlation of the tribological behaviors with the mechanical properties of poly-ether-ether-ketones (PEEKs) with different molecular weights and their fiber-filled composites. Wear. 2009, 266, 337–344. https://dx.doi.org/10.1016/j.wear.2008.07.004
- 9. Sasuga T., Hagiwara M. Radiation deterioration of several aromatic polymers under oxidative conditions. Polymer. 1987, 28, 1915–1921. https://dx.doi.org/10.1016/0032-3861(87)90300-4
- 10. Kurtz S.M. Chemical and radiation stability of PEEK. PEEK Biomaterials Handbook, William Andrew Publishing. 2012.
- 11. Chai L., Zhang B., Qiao L., et al. Influence of gamma irradiation-induced surface oxidation on tribological property of polyetheretherketone (PEEK). Polym Bull. 2021, 1–19. https://doi.org/10.1007/s00289-021-03825-4
- 12. Yang L., Ohki Y., Hirai N., et al. Aging of poly (ether ether ketone) by heat and gamma rays—Its degradation mechanism and effects on mechanical, dielectric and thermal properties. Polym Degrad Stab. 2017, 142, 117–128. https://dx.doi.org/10.1016/j.polymdegradstab.2017.06.002
- 13. Hnatowicz V., Havranek V., Bočan J., et al. Modification of poly (ether ether ketone) by ion irradiation. Nucl Instrum Methods Phys Res B Beam Interact Mater At. 2008, 266, 283–287. https://dx.doi.org/10.1016/j.nimb.2007.11.031
- 14. Oromiehie E., Nair V., Short K., et al. Effect of He2+ ion irradiation on the mechanical properties of automated fibre placement (AFP) CF-PEEK thermoplastics composites. Sci Rep. 2023, 13, 18787. https://dx.doi.org/10.21203/rs.3.rs-3027646/v1
- 15. Al Lafi A.G., Hay J.N., Parker D.J. The effect of ion irradiation on the thermal properties of poly (ether ether ketone). J Polym Sci B Polym Phys. 2008, 46, 2212–2221. https://dx.doi.org/10.1002/polb.21553
- 16. Nakamura H., Nakamura T., Noguchi T., et al. Photodegradation of PEEK sheets under tensile stress. Polym Degrad Stab. 2006, 91, 740–746. https://dx.doi.org/10.1016/j.polymdegradstab.2005.06.003
- 17. Czwartos J., Budner B., Bartnik A., et al. Physicochemical surface modifications of polyetheretherketone (PEEK) using extreme ultraviolet (EUV) radiation and EUV-induced nitrogen plasma. Materials. 2020, 13, 4466. https://dx.doi.org/10.3390/ma13194466
- 18. Mylläri V., Ruoko T.P., Järvelä P. The effects of UV irradiation to polyetheretherketone fibres—Characterization by different techniques. Polym Degrad Stab. 2014, 109, 278–284. https://dx.doi.org/10.1016/j.polymdegradstab.2014.08.003
- 19. Niemiec, A., Kujawa, M., & Wieleba, W. The effect of the ionizing radiation on the tribological properties of thermoplastic polymers rubbing against steel. Tribologia. 2016, 5, 133–145.
- 20. Abou Elmaaty, T., Okubayashi, S., Elsisi, H., & Abouelenin, S. Electron beam irradiation treatment of textiles materials: a review. Journal of Polymer Research. 2022, 29(4), 117. https://dx.doi.org/10.1007/s10965-022-02888-9.
- 21. Darraud-Taupiac C., Binsangou V., Isabey R., et al. Topographical modifications in PADC polymer under electron beam irradiation. Polymer. 2000, 41, 6295–6299. https://dx.doi.org/10.1016/s0032-3861(99)00862-9
- 22. Kurbanova B., Aimaganbetov K., Ospanov K., et al. Effects of Electron Beam Irradiation on Mechanical and Tribological Properties of PEEK. Polymers 2023, 15, 1340. https://dx.doi.org/10.3390/polym15061340
- 23. Ormanbekov K., Rakhadilov B., Zhassulan A., et al. Effect of electron irradiation on mechanical, tribological and thermal properties of polytetrafluoroethylene. Eurasian J Phys Funct Mater. 2023, 7, 221–231. https://dx.doi.org/10.32523/ejpfm.2023070402
- 24. Bee S.T., Ratnam C.T., Sin L.T., et al. Effects of electron beam irradiation on mechanical properties and nanostructural–morphology of montmorillonite added polyvinyl alcohol composite. Compos B Eng. 2014, 63, 141–153. https://dx.doi.org/10.1016/j.compositesb.2014.03.021
- 25. El-Saftawy A.A., Elfalaky A., Ragheb M.S., et al. Electron beam induced surface modifications of PET film. Radiat Phys Chem. 2014, 102, 96–102. https://dx.doi.org/10.1016/j.radphyschem.2014.04.025
- 26. Agarwal, R., Singh, M., Ray Chowdhury, S., & Pant, H. J. Effect of electron beam radiation on the mechanical, electrical, heat shrinkable and morphological properties of linear low-density polyethylene/polyolefin elastomer blends. Progress in Rubber, Plastics and Recycling Technology. 2024, 40(3), 287–304. https://dx.doi.org/10.1177/1477760623106066
- 27. Navarro, R., Hernández-Sampelayo, A. R., Adem, E., & Marcos-Fernández, A. Effect of electron beam irradiation on the properties of poly (tetramethylene oxide) and a poly (tetramethylene oxide)-based polyurethane. Radiation Physics and Chemistry. 2020, 174, 108905. https://dx.doi.org/10.1016/j.radphyschem.2020.108905
- 28. Jamalzadeh, M., & Sobkowicz, M. J. Review of the effects of irradiation treatments on poly (ethylene terephthalate). Polymer Degradation and Stability. 2022, 206, 110191. https://dx.doi.org/10.1016/j.polymdegradstab.2022.110191
- 29. Auslender V.L., Bukin A.D., Voronin L.A., et al. Bremsstrahlung converters for powerful industrial electron accelerators. Radiat Phys Chem. 2004, 71, 297–299. https://dx.doi.org/10.1016/j.radphyschem.2004.04.007
- 30. Rival G., Paulmier T., Dantras E. Influence of electronic irradiations on the chemical and structural properties of PEEK for space applications. Polym Degrad Stab. 2019, 168, 108943. https://dx.doi.org/10.1016/j.polymdegradstab.2019.108943
- 31. Sasuga T., Kudoh H. Ion irradiation effects on thermal and mechanical properties of poly (ether–ether–ketone)(PEEK). Polymer. 2000, 41, 185–194. https://dx.doi.org/10.1016/s0032-3861(99)00143-3
- 32. Appadu S., Ratnam C.T., Ahmad S. Effects of Electron Beam Irradiation on the Thermal Properties of Scrap Polytetrafluoroethylene. Sains Malays. 2022, 51, 3765–3774. https://dx.doi.org/10.17576/ jsm-2022-5111-20
- 33. Yin J., Zhang A., Liew K.Y., et al. Synthesis of poly (ether ether ketone) assisted by microwave irradiation and its characterization. Polym. Bull. 2008, 61, 157–163. https://dx.doi.org/10.1007/s00289-008-0942-6
- 34. McLauchlin A.R., Ghita O.R., Savage L. Studies on the reprocessability of poly (ether ether ketone)(PEEK). J Mater Process Technol. 2014, 214, 75–80. https://dx.doi.org/10.1016/j.jmatprotec.2013.07
- 35. Rinaldi M., Cecchini F., Pigliaru L., et al. Additive manufacturing of polyether ether ketone (PEEK) for space applications: A nanosat polymeric structure. Polymers. 2020, 13, 11. https://doi.org/10.3390/polym13010011
- 36. Niemiec A. Connection between structural changes of irradiated polyether ether ketone and mechanical properties. Tribologia. 2018, 278, 95–101. https://dx.doi.org/10.5604/01.3001.0012.6981
- 37. Sasuga T., Hayakawa N., Yoshida K., et al. Degradation in tensile properties of aromatic polymers by electron beam irradiation. Polymer. 1985, 26, 1039–1045. https://dx.doi.org/10.1016/0032-3861(85)90226-5
- 38. Cheng B., Duan H., Chen Q., et al. Effect of laser treatment on the tribological performance of polyetheretherketone (PEEK) under seawater lubrication. Appl Surf Sci. 2021, 566, 150668. https://dx.doi.org/10.1016/j.apsusc.2021.150668
- 39. Zalaznik M., Kalin M., Novak S., et al. Effect of the type, size and concentration of solid lubricants on the tribological properties of the polymer PEEK. Wear. 2016, 364, 31–39. https://dx.doi.org/10.1016/j.wear.2016.06.013
- 40. Hammouti S., Pascale-Hamri A., Faure N., et al. Wear rate control of PEEK surfaces modified by femtosecond laser. Appl Surf Sci. 2015, 357, 1541–1551. https://dx.doi.org/10.1016/j.apsusc.2015.09.204
- 41. Nayak C., Balani K. Effects of reinforcements and gamma-irradiation on wear performance of ultra-high molecular weight polyethylene as acetabular cup liner in hip-joint arthroplasty: a review. J Appl Polym Sci. 2021, 138(43), 51275. https://dx.doi.org/10.1002/app.51275
- 42. Niemiec A. Impact of gamma radiation on PEEK and its tribological properties. Tribologia. https://dx.doi.org/10.**link_if_needed
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6da30c2b-0267-4921-b923-34c0793d67ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.