PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Light pipe prototype testing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Badania możliwości zastosowania światłowodu do oświetlania pomieszczeń
Języki publikacji
EN
Abstrakty
EN
The article reviews the potential of light pipe system as a daylighting approach in buildings and presents results of experiments on performance of tubular light pipe prototype. The main task is focused on an examination of the system light efficiency on the basis of long-term illuminance measurements. The data from the measurement give overview about the potential of the light guiding system for direct solar radiation. For temperate climate with dominant cloudy sky conditions the light guide shouuld be completed with sun tracking system to increase efficiency.
PL
W artykule zaprezentowano możliwość zastosowania światłowodu do oświetlania pomieszczeń w budynkach. Badano przede wszystkim skuteczność oświetlenia na podstawie długoczaswych pomiarów. W przypadku zachmurzonego nieba system powinien współpracować z układem śledzącym położenie słońca.
Rocznik
Strony
107--112
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Civil Engineering, Brno University of Technology, Veveri 95, 602 00 Brno, Czech Republic
autor
  • Faculty of Civil Engineering, Brno University of Technology, Veveri 95, 602 00 Brno, Czech Republic
autor
  • Faculty of Civil Engineering, Brno University of Technology, Veveri 95, 602 00 Brno, Czech Republic
Bibliografia
  • [1] CIE 173. Tubular daylight guidance systems. Technical report, CIE, Vienna 2012.
  • [2] Carter J., Developments in tubular daylight guidance systems, Building Research Information, 32 (2004), No. 3, 220–34.
  • [3] Oakley G. et al., Daylight performance of light pipes. Solar Energy, 69 (2000), No. 2, 89–98.
  • [4] Rosemann, A., Kaase, H., Lightpipe applications for daylighting systems. Solar Energy, 78 (2005), p. 772-780.
  • [5] Jenkins D., Muneer T., Modelling light-pipe performances - a natural daylighting solution. Building and Environment, 38 (2003), 965-972.
  • [6] Kocifaj M. et al., HOLIGILM: Hollow Light Guide Interior Illumination Method - An Analytic Calculation Approach for Cylindrical Light-Tubes, Solar Energy, 82 (2008), 247-259.
  • [7] Darula D. et al. Illumination of Interior Spaces by Bended Hollow Light Guides: Application of the Theoretical Light Propagation Method, Solar Energy, 84 (2010), 2112-2119.
  • [8] van Derlofske, J.F., Hough, T.A., Analytical model of flux propagation in light-pipe systems. Optical Engineering, 43, (2004), No. 7, 1503–1510.
  • [9] Samuhatananon S. et al., An Experimental and Analytical Study of Transmission of Daylight through Circular Light pipes, Leukos, 7 (2011), No. 4, 203-219.
  • [10] Jenkins, D. et al., A design tool for predicting the performances of light pipes, Energy and Buildings, 37 (2005), No. 5, 485–492.
  • [11] Zhang, X., Muneer, T. A design guide for performance assessment of solar light guide. Lighting Research and Technology, 34 (2002), No. 2, 149-169.
  • [12] Zazzini, P, et al., Numerical and experimental analysis of light pipes' performances: comparison of the obtained results, Proceedings of the 23th International Conference on Passive and Low Energy Architecture, vol. 2, Geneva 2006, 219-224.
  • [13] Dobre, O., Achard, G., Optical simulation of lighting by hollow light pipes. Ninth Intern. IBPSA Conference, Building Simulation Montréal, 2005, 263-270.
  • [14] Chirarattananon, S. et al., Simulation of transmission of daylight through cylindrical light pipes, Journal of Sustainable Energy and Environment, 1 (2010), 97–103.
  • [15] Ellis, P. et al., Simulation of Tubular Daylighting Devices and Daylighting Shelves in EnergyPlus, SimBuild 2004, IBPSAUSA Boulder, 2004.
  • [16] Carter, D.J., The measured and predicted performance of passive solar light pipe systems. Lighting Research and Technology, 34 (2002), No. 1, 39-51.
  • [17] Paroncini M., et al., Monitoring of a light-pipe system, Solar Energy, 81 (2007), No. 9, 1180–1186.
  • [18] Li, D.H.W. et al., An analysis of light-pipe system via fullscale measurements. Applied Energy, 87 (2010), No. 3, 799– 805.
  • [19] Marwaee A, Carter DJ, A field study of tubular daylight guidance installations, Lighting Research and Technology, 38 (2006), No. 3, 241–58.
  • [20] Su, Y, Khan, N. et al., Comparative monitoring and data regression of various sized commercial lightpipes. Energy and Buildings 50 (2012), 308-314.
  • [21] Lo Verso, V.R.M et al., Light transmission efficiency of daylight guidan ce systems: an assessment approach based on simulations and measurements in a sun/sky simulator. Solar Energy, 85 (2011), No. 11, 2789-2801.
  • [22] Malet-Damour B., et al., Light Pipes Performance Prediction: Inter Model and Experimental Confrontation on Vertical Circular Light-guides, Energy Procedia, 57 (2014), 1977-1986.
  • [23] Mayhoub, M.S. Innovative daylighting systems’ challenges: A critical study. Energy and Buildings, 80 (2014), 394-405.
  • [24] Abdul-Rahman, H., Wang, Ch., Limitations in current day lighting related solar concentration devices: a critical review, International Journal of the Physical Sciences, 5 (2010), No. 18, 2730-2756.
  • [25] Nair, M.G. et al., Classification of indoor daylight enhancement systems, Lighting Research and Technology, 46, (2014), No. 3, 245-267.
  • [26] Kim J.T., Kim G., Overview and new developments in optical daylighting systems for building a healthy indoor environment, Building and Environment, 45 (2010), No. 2, 256– 269.
  • [27] Light pipe prototype Lightway, www.Lightway.cz.
  • [28] Darula, S. et al., Hollow light guide efficiency and illuminance distribution on the light-tube base under overcast and clear sky conditions. Optik, 124 (2013), No. 17, 3165-3169.
  • [29] Standard ČSN 36 0020:2015 Sdružené osvětlení – Základní požadavky (Integral lighting – Basic requirement), ÚNMZ, Prague 2015.
  • [30] Darula S., Rybár P. et al., Laboratory measurement of efficiency of light tramsmittance through a hollow light guide, Przeglad Elektrotechniczny, 86 (2010), nr 10, 177-180.
  • [31] Mohelníková J., Evaluation of indoor illuminance from light guides. Light and Visual Environment, 32 (2008), No. 1, 20-26.
  • [32] Plch, J., et al., Tubular light guide model. Przeglad Elektrotechniczny, LXXXIV (2008), nr 8, 68-69.
  • [33] Plch, J., et al., Influence of colour of shading obstacles on indoor daylighting, Przeglad Elektrotechniczny, 87 (2011), nr 4, 35-37.
  • [34] Standard SN 73 0581:2009 Oslunění budov a venkovních prostor - Metoda stanovení hodnot (Insolation of buildings and outdoor areas - The method of assesment the values), ÚNMZ, Prague 2009.
  • [35] Baker, N., Steemers, K. Daylight Design of Buildings: A Handbook for Architects and Engineers. Earthscan, Routledge, Oxon, 2014.
  • [36] Makaremi, M. Et al. Quantifying the effects of interior surface reflectance on indoor lighting. Energy Procedia 134 (2017), 306–316.
  • [37] Harvey, D.L.D. A Handbook on Low-Energy Buildings and District-Energy Systems: Fundamentals, Techniques and Examples. Earthscan, London, 2006.
  • [38] Tiwari, G.N: et al., Handbook of Solar Energy: Theory, Analysis and Applications. Springer Science+Business Media, Singapore, 2016.
  • [39] Boubekri, M. Daylighting Design: Planning Strategies and Best Practice Solutions. Birkhäuser, Basel, 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6da1136f-2ce4-4341-8804-60205ae2ff6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.