Identyfikatory
Warianty tytułu
Badania metodą dyfrakcji promieniowania Xoraz spektroskopii efektu Mössbauera AgFeO2domieszkowanego jonami Co, Ni i Al wytwarzanego metodą hydrotermalną
Języki publikacji
Abstrakty
Delafossite AgFeO2, AgFe0.9Al0.1O2, AgFe0.9Ni0.1O2, and AgFe0.9Co0.1O2 powders were synthesized by hydrothermal method. The structural analysis and hyperfine interactions investigations were performed by X-ray diffraction and the Mössbauer spectroscopy. It was found that the (Al, Ni, Co)-doped delafossite phases with traces of metallic silver can be obtained during hydrothermal synthesis. Investigations revealed that the type of the incorporated element has an impact on the structural properties of the obtained delafossites. However, doping of cobalt, nickel, and alumina ions to the AgFeO2 delafossite structure does not cause significant changes in the values of the hyperfine interactions parameters. The of the Mössbauer spectra confirm the paramagnetic character of the obtained compounds at room temperature.
Proszkowe próbki delafosytów AgFeO2, AgFe0.9Al0.1O2, AgFe0.9Ni0.1O2, and AgFe0.9Co0.1O2 zostały wytworzone metodą hydrotermalną. Badania pozwalające na analizę strukturalną oraz oszacowanie parametrów oddziaływań nadsubtelnych przeprowadzono z wykorzystaniem dyfrakcji rentgenowskiej oraz spektroskopii efektu Mössbauera. Udowodniono, że za pomocą metody hydrotermalnej istnieje możliwość wytworzenia delafosytu AgFeO2 domieszkowanego jonami glinu, niklu i kobaltu z niewielką ilością zanieczyszczeń metalicznym srebrem. Badania wykazały, że rodzaj domieszki ma wpływ na właściwości strukturalne otrzymanych materiałów. Domieszkowanie jednak nie wpłynęło znacząco na zmiany wartości parametrów oddziaływań nadsubtelnych. Kształt zarejestrowanych widm mössbauerowskich potwierdza paramagnetyzm otrzymanych materiałów w temperaturze pokojowej.
Rocznik
Tom
Strony
15--18
Opis fizyczny
Bibliogr. 22 poz., tab., wykr.
Twórcy
autor
- Lublin University of Technology, Department of Electronics and Information Technologies, Lublin, Poland
Bibliografia
- [1] Abdelhamid H. N.: Delafossite Nanoparticle as New Functional Materials: Advances in Energy, Nanomedicine and Environmental Applications. Materials Science Forum 832, 2015, 28–53.
- [2] Daniel U., Dabici A., Iuliana S., Miclau M.: Photovoltaic Performance of Co-Doped CuCrO2 for p-Type Dye-Sensitized Solar Cells Application. Energy Procedia 112, 2017 497–503.
- [3] Dong C. J., Yu W. X., Xu M., Cao J. J., Zhang Y., Chuai Y. H., Wang Y. D.: Evidence of Room Temperature Ferromagnetism in Co-Doped Transparent CuAlO2 Semiconductor. Journal of Alloys and Compounds 512, 2012 195–98.
- [4] El-Bassuony A. A. H., Abdelsalam H. K.: Attractive Improvement in Structural, Magnetic, Optical, and Antimicrobial Activity of Silver Delafossite by Fe/Cr Doping. Journal of Superconductivity and Novel Magnetism 31, 2018, 3691–3703.
- [5] Elkhouni T., Amami M., Colin C. V., Strobel P., Salah A. B: Synthesis, Structural and Magnetic Studies of the CuCr1−xCoxO2 Delafossite Oxide. Journal of Magnetism and Magnetic Materials 330, 2013, 101–105.
- [6] Elkhouni T., Amami M., Colin C. V., Salah A. B: Structural and Magnetoelectric Interactions of (Ca, Mg)-Doped Polycrystalline Multiferroic CuFeO2. Materials Research Bulletin 53, 2014, 151–57.
- [7] Gall R. B., Ashmore N., Marquardt M. A., Tan X., Cann D. P.: Synthesis, Microstructure, and Electrical Properties of the Delafossite Compound CuGaO2. Journal of Alloys and Compounds 391, 2005, 262–66.
- [8] Khomskii D. I.: Classifying Multiferroics: Mechanisms and Effects. Physics 2, 2009, 1–7.
- [9] Khomskii D. I.: Ferroelectrics, Magnetoelectrics, and Multiferroics. In Transition Metal Compounds. Cambridge University Press, Cambridge 2014, 269–309.
- [10] Presniakov I., Rusakov V., Sobolev A., Gapchka A., Matsnev M., Belik A. A.: 57Fe Mössbauer Study of New Multiferroic AgFeO2. Hyperfine Interactions 226, 2014, 41–50.
- [11] Prewitt C. T., Robert D. S., Rogers D. B.: Chemistry of Noble Metal Oxides. II. Crystal Structures of Platinum Cobalt Dioxide, Palladium Cobalt Dioxide, Copper Iron Dioxide, and Silver Iron Dioxide. Inorganic Chemistry 10, 1971, 719–723.
- [12] Ray N., Gupta V., Sarma L., Kush P., Nag J., Sapra S.: Tuning the Electronic and Magnetic Properties of CuAlO2 Nanocrystals Using Magnetic Dopants. ACS Omega 3, 2018, 509–513.
- [13] Sato K., Katayama-Yoshida H.: First Principles Materials Design for Semiconductor Spintronics. Semiconductor Science and Technology 17, 2002, 367–76.
- [14] Shannon R. D.: Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica: Section A 32, 1976 751–767.
- [15] Shannon R. D., Rogers D. B., Prewitt C. T.: Chemistry of Noble Metal Oxides. I. Syntheses and Properties of ABO2 Delafossite Compounds. Inorganic Chemistry 10, 1971, 713–718.
- [16] Sheets W. C., Stampler E. S., Bertoni M. I., Sasaki M., Marks T. J., Mason T. O., Poepplemeier K. R.: Silver Delafossite Oxides. Inorganic Chemistry 47, 2008, 2696–2705.
- [17] Siedliska K., Pikula T., Franus W., Jartych E.: X-Ray Diffraction and 57Fe Mössbauer Spectroscopy Studies of Co-Doped AgFeO2. Acta Physica Polonica A 134, 2018, 1040–1043.
- [18] Siedliska K., Pikula T., Surowiec Z., Chocyk D., Jartych E.: X-ray Diffraction and 57Fe Mössbauer Spectroscopy Studies of Delafossite AgFeO2 Prepared by Co-Precipitation Method. Journal of Alloys and Compounds 690, 2017, 182–188.
- [19] Taddee C., Kamwanna T., Amornkitbamrung V.: Characterization of Transparent Superconductivity Fe-doped CuCrO2 Delafossite Oxide. Applied Surface Science 380, 2016, 237–242.
- [20] Wheatley R. A., Roble M., Gence L., Acuna C., Rojas-Aedo R., Hidalgo-Rojas D., Guzmann-De La Creda D. E., Vojkovic S., Seifert B., Volkmann U. G., Diaz-Droguett D. E.: Structural, Optoelectronic and Photo-Thermoelectric Properties of Crystalline Alloy CuAlxFe1-XO2 Delafossite Oxide Materials. Journal of Alloys and Compounds, 2020, in press.
- [21] Zhao Y., An H., Dong G., Feng J., Wei T., Ren Y., Ma J.: Oxygen Vacancies Induced Heterogeneous Catalysis of Peroxymonosulfate by Ni-Doped AgFeO2 Materials: Evolution of Reactive Oxygen Species and Mechanism. Chemical Engineering Journal 388, 2020, 124371.
- [22] Zwiener L., Jones T., Wolf E. H., Girgdies F., Plodinec M., Klyushin A. Y., Willinger E., Rosowski F., Schogl R., Frei E.: Synthesis and Characterization of Ag-Delafossites AgBO2 (B : Al, Ga, In) from a Rapid Hydrothermal Process. European Journal of Inorganic Chemistry 18, 2019, 2333–2345.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d9740cd-a570-4499-8ff1-8174e99cdb39