PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Minimization of Energy Consumption of Vortex Devices for Granulation of Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article considers the possibility of efficient energy and environmental use of vortex devices for the granulation of solids. The factors influencing the energy consumption for generating a vortex flow with dispersed solid inclusions are analysed. A mathematical model for calculating the aerodynamic drag of a vortex apparatus in a clean gas flow, which was used in computer modelling, is presented. The main dependencies for determining the influence of the geometric dimensions of the vortex on its aerodynamic drag are also given. An analytical solution to the problem of minimising the aerodynamic drag of a vortex apparatus during the movement of a dispersed medium is considered. The forces acting on the particles in the cyclone chamber during interaction with the gas are analysed. In this paper, a general method for calculating the parameters of cyclone-vortex devices for dispersed media using the basic equations of hydrodynamics and gas dynamics is developed. The solution approach used in this paper can be extended to other vortex devices not considered in this work.
Rocznik
Tom
Strony
198--207
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Kielce University of Technology, Kielce, Poland
  • German Aerospace Center (DLR), Institute of Solar Research, Juliech, Germany
autor
  • Zaporizhzhya National University, Zaporizhzhya, Ukraine
  • Zaporizhzhya National University, Zaporizhzhya, Ukraine
Bibliografia
  • Browand, F. (1983). The mixing layer: an example of quasi two-dimensional turbulence. Thermal Energy, 2, 99-120.
  • Domfeh, M.K.; Gyamfi, S.; Amo-Boateng, M.; Andoh, R.; Ofosu, E.A.; Tabor, G. (2020) Numerical Simulation of an Air-Core Vortex and Its Suppression at an Intake Using OpenFOAM. Fluids, 5, 221. https://doi.org/10.3390/fluids5040221
  • Golubtsov, V. (1975). To calculate the resistance of the vortex gas burners. Gas Industry, 1, 52-54.
  • Koshlak, H., Pavlenko, A. (2020). Mathematical Model of Particle Free Settling in a Vortex Apparatus. Rocznik Ochrona Środowiska, 22, 727-734.
  • Koshlak, H., Pavlenko, A. (2019). Method of formation of thermophysical properties of porous materials. Rocznik Ochrona Srodowiska, 21(2), 1253-1262.
  • Kubin, A. Ladislas, P. (1992). Dislocation microstructures and plastic flow: a 3D simulation. Solid state phenomena, 1, 455-472.
  • Lobanov, I.E. (2013). Modeling the structure of vortex zones between periodic superficially located energisers of the flow of a rectangular cross section. Mathematical Models and Computer Simulations, 5(1), 63-74.
  • Mulligan, S., Casserly, J., Sherlock, R. (2016). Effects of geometry on strong free-surface vortices in subcritical approach flows. Journal of Hydraulic Engineering, 142(11), 04016051.
  • Pavlenko, A., Koshlak, H. (2015), Production of porous material with projected thermophysical characteristics. Metallurgical and Mining Industry, 7(1), 123-127.
  • Pavlenko, A.M., Koshlak, H. (2021). Application of Thermal and Cavitation Effects for Heat and Mass Transfer Process Intensification in Multicomponent Liquid Media. Energies, 14, 7996. https://doi.org/10.3390/en14237996
  • Pavlenko, A.M., Basok, B.I., Avramenko, A.A. (2005). Heat conduction of a multi-layer disperse particle of emulsion. Heat Transfer Research, 36(1-2), 55-61.
  • Stremlera, M.A., Salmanzadeha, A., Saikat Basua Charles, Williamsonb, H.K. (2011). A mathematical model of 2P and 2C vortex wakes. Journal of Fluids and Structures, 27(5-6), 774-783.
  • Seraya, O., Demin, A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input. Journal of Automation and Information Sciences, 44, 34-48.
  • Shanmugharaj, A., Rhee, K. (2006). Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. Journal of colloid and interface science, 298, 854-859.
  • Tager, S. (1971). Calculation of aerodynamic drag cyclone combustor. Thermal, 7, 18-23.
  • Wu, Y., Jiang, Z., Zhang X. (2012). Numerical Simulation of Thermal Process in Rotary Hearth Furnace for Pellet Direct Reduction. Advanced Materials Research, 2, 1282-1286.
  • Wu, S.Y., Xiao, Y.W., Nie, C.D., Wu, Z.M. (2022). Effects of Inlet Types and Lengths on the Flow Field of Cyclone Separators. Journal of Applied Fluid Mechanics, 15(2), 591-601. https://doi.org/10.47176/jafm.15.02.32834
  • Yamasaki, H. (2022). Visualisation and Measurement of Swirling Flow of Dry Ice Particles in Cyclone Separator-Sublimator. Energies, 15(11), 34-39.
  • Yohana, E. (2022). Innovation of vortex finder geometry (tapered in-cylinder out) and additional cooling of body cyclone on velocity flow field, performance, and heat transfer of cyclone separator. Powder Technology, 399, 76-89.
  • Yuge Yao, Wenshi Huang, Yuxin Wu, Yang Zhang, Man Zhang, Hairui Yang, Junfu Lyu, (2021). Effects of the inlet duct length on the flow field and performance of a cyclone separator with a contracted inlet duct. Powder Technology, 393, 12-22. https://doi.org/10.1016/j.powtec.2021.07.044
  • Zhaopeng Zhu, Mengmeng Zhou, Buwen Yu, Xianzhi Song, Gensheng Li, Shuo Zhu, Zhengming Xu, Xuezhe Yao, Zihao Liu, (2022). A unified equation of settling velocity for particles settling in cylinder, annulus and fracture. Journal of Petroleum Science and Engineering, 213, 110446. https://doi.org/10.1016/j.petrol.2022.110446
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d959edc-f79b-4055-945c-3966c56ecdc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.