PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary assessment of the impact of soil microorganisms on greenhouse gas emissions expressed in CO2 equivalent and grass biomass

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
The pot experiment was conducted to access the soil microorganisms biomass (physiological method - Substrate Induced Respiration) and emissions of N2O, CO2 and CH4 (photoacoustic infrared detection method), and grasses biomass (weight method). The obtained results of analysed gases were converted to CO2 equivalent. There was no effect of the microorganisms biomass on the N2O emissions. The increase in CO2 emissions was accompanied by an increase in the microorganisms biomass (r = 0.48) under the conditions of the I swath and acid soil reaction, as well as the II swath and neutral reaction (r = 0.94). On the other hand, in the case of CH4 emission, such a relationship was noted both swaths under the conditions of neutral reaction (r = 0.51), but a negative correlation (r = –0.71) was noted for the acid reaction only at the II swath. The increase in the grasses biomass with the increase in the microorganisms biomass was recorded only at the II swath in neutral reaction (r = 0.91). In a short period of time, with the neutral soil reaction with the increase in the soil microorganisms biomass, an increase in CO2 sequestration and biomass of cultivated grasses was noted. Information on the determination of the microorganisms groups responsible mainly for the transformation of carbon compounds and CO2 and CH4 emissions from the soils of grasslands would be valuable scientifically.
Wydawca
Rocznik
Tom
Strony
108--117
Opis fizyczny
Bibliogr. 47 poz., fot., rys., tab., wykr.
Twórcy
  • West Pomeranian University of Technology in Szczecin, al. Piastów 17, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, al. Piastów 17, 70-310 Szczecin, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
Bibliografia
  • AGUILERA E., GUZMÁN G., ALONSO A. 2015. Greenhouse gas emissions from conventional and organic cropping systems in Spain. Herbaceous crops. Agronomy for Sustainable Development. Vol. 35 p. 713–724. DOI 10.1007/s13593-014-0267-9.
  • ANDERSON J.P.E., DOMSCH K.H. 1978. A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biology and Biochemistry. No. 10 p. 215–221. DOI 10.1016/0038-0717(78)90099-8.
  • BAHRAM M., HILDEBRAND F., FORSLUND S.K., ANDERSON J.L., SOUDZILOVS-KAIA N.A., BODEGOM P.M., ..., BORK P. 2018. Structure and function of the global topsoil microbiome. Nature. No. 560 p. 233–237. DOI 10.1038/s41586-018-0386-6.
  • BHATTACHARYYA P., PATHAK H., PAL S. 2020. Crop management for climate-smart agriculture. In: Climate smart agriculture. Green Energy and Technology, Springer, Singapore p. 88–111. DOI 10.1007/978-981-15-9132-7.
  • BIERNAT L., TAUBE F., LOGES R., KLUß C., REINSCH T. 2020. Nitrous oxide emissions and methane uptake from organic and conventionally managed arable crop rotations on farms in Northwest Germany. Sustainability. Vol. 12(8), 3240 p. 1–19. DOI 10.3390/su12083240.
  • BURCZYK P., GAMRAT R., GAŁCZYŃSKA M. 2008. The use of the photoacoustic field gas monitor for measurement of the concentration of gases in measurements of dinitrogen oxide emission from grassland’s soils. Polish Journal of Environmental Studies. Vol. 17(3A) p. 105–108.
  • BURCZYK P., MICHALCEWICZ W., GAŁCZYŃSKA M., GAMRAT R. 2016. Wpływ rodzaju nawożenia azotowego na zawartość biomasy żywych mikroorganizmów w glebie i emisję ditlenku węgla [Effect of nitrogen fertilization types on the soil microorganisms biomass and emissions of carbon dioxide]. Woda-Środowisko-Obszary Wiejskie. T. 16. Z. 2(54) p. 5–15.
  • CHITRA K., PRIYA B.S. 2020. Agricultural pollution. Chapter 4. In: A primer on earth pollution: pollution types and disposal [online]. Eds. J. Senthil Kumar, P. Ponmurugan, A. Vinoth Kanna. Singapure. Bentham Books p. 46–58. [Access 10.12.2020]. Available at: https://benthambooks.com/book/9789811476556/
  • CONSTANCIAS F., TERRAT S., SABY N.P., HORRIGUE W., VILLERD J., GUILLEMIN J.P., BIJU-DUVAL L., NOWAK V., DEQUIEDT S., RANJARD L., CHEMIDLIN PREVOST-BOURE N. 2015. Mapping and determinizm of soil microbial community distribution across an agricultural landscape. MicrobiologyOpen. Vol. 4(3) p. 505–517. DOI 10.1002/mbo3.255.
  • DAI H., ZHANG H., LI Z., LIU K., ZAMANIAN K. 2021. Tillage practice impacts on the carbon sequestration potential of topsoil microbial communities in an agricultural field. Agronomy. Vol. 11(1), 60 p. 1–17. DOI 10.3390/agronomy11010060.
  • DAI Z., YU M., CHEN H., ZHAO H., HUANG Y., SU W., XIA F., CHANG S., BROOKES P., DAHLGREN R., XU J. 2020. Elevated temperature Shift soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology. Vol. 26(9) p. 5267–5276. DOI 10.1111/gcb.15211.
  • DELGADO-BAQUERIZO M., ELDRIDGE D.J., OCHOA V., GOZALO B., SINGH B. K., MAESTRE F.T. 2017. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters. No. 20(10) p. 1295–1305. DOI 10.1111/ele.12826.
  • FENG J., WEI K., CHEN Z.H., LU X.T., TIAN J.H., WANG C., CHEN L.J. 2019. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: Evidence from ecoenzymatic stoichiometry. Global Biogeochemical Cycles. No. 33 p. 559–569. DOI 10.1029/2018GB006112.
  • GAŁCZYŃSKA M., GAMRAT R., BURCZYK P. 2018. Effect of nitro gen fertilization on N2O emission in different soil reaction and grown grass species. Applied Ecology and Environmental Research. No. 16(5) p. 6761–6777. DOI 10.15666/aeer/1605_67616777.
  • GAŁCZYŃSKA R., GAMRAT R., BURCZYK P., MICHALCEWICZ W. 2016. Effect of nitrogen fertilization types on the soil microorganisms biomass and emissions of nitrous oxide. Agriculture & Forestry. Vol. 62(4) p. 57–64. DOI 10.17707/AgricultForest.62.4.07.
  • GEISSELER D., SCOW K.M. 2014. Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biology and Biochemistry. No. 75 p. 54–63. DOI 10.1016/j.soilbio.2014.03.023.
  • GROSS S., ROBBINS E.I. 2000. Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia. Vol. 433 p. 91–109. DOI 10.1023/A:1004014603333.
  • GUILFORD J.P., FRUCHTER B. 1977. Fundamental statistics in psychology and education. 6 th edition. New York. McGraw-Hill Book Co. pp. 555.
  • HUNDERTMARK W.J., LEE M., SMITH I.A., ASHLEY H.Y., BANG A.H.Y., CHEN V., CONOR K. GATELY C.K., TEMPLER P., LUCY R., HUTYRA L.R. 2021. Influence of landscape management practices on urban greenhouse gas budgets. Carbon Balance Management. Vol. 16(1) p. 1–12. DOI 10.1186/s13021-020-00160-5.
  • HUNTINGFORD C., WILLIAMSON M.S., NIJSSE F.J.M.M. 2020. CMIP6 climate models imply high committed warming. Climatic Change. Vol. 162 p. 1515–1520. DOI 10.1007/s10584-020-02849-5.
  • IPCC 2018. Summary for Policymakers. In: Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Eds. P.V. Masson-Delmotte, H.O. Zhai, D. Pörtner, J. Roberts, P.R. Skea, A. Shukla, W. Pirani, C. Moufouma-Okia, R. Péan, S. Pidcock. Geneva, Switzerland, Nairobi, Kenia. World Meteorological Organization, United Nations Environmental Programme p. 3–24.
  • JANTKE K., HARTMANN M.J., RASCHE L., BLANZ B., SCHNEIDER U.A. 2020. Agricultural greenhouse gas emissions: Knowledge and positions of German farmers. Land. Vol. 9(5), 130 p. 1–13. DOI 10.3390/land9050130.
  • JONES D.L., COOLEDGE E.C., HOYLE F.C., GRIFFITHS R.I., MURPHY D.V. 2019. pH and exchange able aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities. Soil Biology and Biochemistry. Vol. 138, 107584 p. 1–5. DOI 10.1016/j.soilbio.2019.107584.
  • KUNHIKRISHNANR A., THANGARAJAN R., BOLAN N.S., XU Y., MANDAL S., GLEESON D.B., SESHADRI B., ZAMAN M., BARTON L., TANG C., LUO J., DALAL R., DING W., KIRKHAM M.B., NAIDU R. 2016. Functional relationships of soil acidification, liming, and greenhouse gas flux. Advances in Agronomy. Vol. 139 p. 1–71. DOI 10.1016/bs.agron.2016.05.001.
  • KUZYAKOV Y., HORWATH W.R., DORODNIKOV M., BLAGODATSKAYA E. 2019. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biology and Biochemistry. No. 128 p. 66–78. DOI 10.1016/j.soilbio.2018.10.005.
  • LIU Q., LIU X., BIAN C., MA C., LANG K., HAN H., LI Q. 2014. Response of soil CO 2 emission and summer maize yield to plant density and straw mulching in the North China Plain. The Scientific World Journal. Vol. 2014 p. 1–8. DOI 10.1155/2014/180219.
  • LIU Y., LI X., KOU Y. 2020. Ectomycorrhizal fungi: Participation in nutrient turnover and community assembly pattern in forest ecosystems. Forests. Vol. 11(4), 453 p. 1–16. DOI 10.3390/f11040453.
  • LLOYD K.G., STEEN A.D., LADAU J., YIN J., CROSBY L. 2018. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. Applied Environmental Science. Vol. 3(5) p. 1–12. DOI 10.1128/mSystems.00055-18.
  • MAJEED A., KALEEM ABBASI M., HAMEED S., IMRAN A., RAHIM N. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology. Vol. 6, 198 p. 1–10. DOI 10.3389/fmicb.2015.00198.
  • MALIK A.A., PUISSANT J., BUCKERIDGE K.M., GOODALL T., JEHMLICH N., CHOWDHURY S., ..., GRIFFITHS R.I. 2018. Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications. Vol. 9, 3591 p. 1–10. DOI 10.1038/s41467-018-05980-1.
  • MĄCIK M., GRYTA A., FRĄC M. 2020. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy. Vol. 162 p. 31–87. DOI 10.1016/bs.agron.2020.02.001.
  • MYHRE G., SHINDELL D., RÉON F.-M., COLLINS W., FUGLESTVEDT J., HUANG J., KOCH D., LAMARQUE J.-F., LEE D., MENDOZA B., NAKAJIMA T., ROBOCK A., STEPHENS G., TAKEMURA T., ZHANG H. 2013. Anthropogenic and natural radiative forcing. In: Climate Change 2013. The physical science basis [online]. Eds. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA. Cambridge University Press p. 659–740. [Access 12.12.2020]. Available at: https://www.ipcc.ch/site/assets/up-loads/2018/02/WG1AR5_Chapter08_FINAL.pdf
  • OCHAL P., JADCZYSZYN T., JURGA B., KOPIŃSKI J., MATYKA M., MADEJ A., RUTKOWSKA A., SMRECZAK B., ŁYSIAK M. 2017. Środowiskowe aspekty zakwaszenia gleb w Polsce [Environmental aspects of soil acidification in Poland] [online]. Puławy. IUNG-PIB pp. 44. [Access 15.12.2020]. Available at: https://www.researchgate.net/publication/326552202
  • ROUSK J., BÅÅTH E., BROOKES P., LAUBER C.L., LOZUPONE C., CAPORASO J. G., KNIGHT R., FIERER N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. Microbial Ecology and Functional Diversity of Natural Habitats. The ISME Journal. No. 4 p. 1340–1351. DOI 10.1038/ismej.2010.58.
  • SIEBIELEC G. 2017. Stały monitoring gleb użytków rolnych Polski [Permanent monitoring of the soils of agricultural land in Poland]. Studia i Raporty IUNG-PIB Z. 51(5) p. 57–72. DOI 10.26114/sir.iung.2017.51.04.
  • SKYTT T., NIELSEN S.N., JONSSON B.-G. 2020. Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability – A case study of Jämtland, Sweden. Ecological Indicators. Vol. 110, 105831 p. 1–20. DOI 10.1016/j.ecolind.2019.105831.
  • SMRECZAK B., OCHAL P., SIEBIELEC G. 2020. Wpływ zakwaszenia na funkcje gleb oraz wyznaczanie obszarów ryzyka na użytkach rolnych w Polsce [Influence of acidification on soil functions and determination of risk areas on agricultural land in Poland]. Studia i Raporty IUNG-PIB. Z. 64(18) p. 31–47. DOI 10.26114/sir.iung.2020.64.02.
  • SRIVASTAVA N. 2021. Synergistic relationship in bioremediation of soil for sustainable agriculture. Chapter 8. In: Phytomicrobiome interactions and sustainable agriculture. Eds. A. Verma, J.K. Saini, A.E-L. Hesham, H.B. Singh. Wiley Blacwell, Pondicherry, India. DOI 10.1002/9781119644798.ch8.
  • TIMMA L., DACE E., KNUDSEN M.E. 2020. Temporal aspects in emission accounting – Case study of agriculture sector. Energies. Vol. 13 (4), 800 p. 1–21. DOI 10.3390/en13040800.
  • TROTTIER S. 2015. Understanding the changes to Global Warming Potential (GWP) values [online]. Econometrica pp. 9. [Access 02.12.2020]. Available at: https://ecometrica.com/assets/Under-standing-the-Changes-to-GWPs.pdf
  • WANG C., ZHOU X., GUO D., ZHAO J.-H., YAN L., FENG G.-Z., GAO Q., YU H., ZHAO L.-P. 2019. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in north-eastern China. Annals of Microbiology. Vol. 69 p. 1461–1473. DOI 10.1007/s13213-019-01529-9.
  • WANG J., LUO Y., QUAN Q., MA F., TIAN D., CHEN W., WANG S., YANG L., MENG C., NIU S. 2021. Effects of warming and clipping on CH4 and N2O fluxes in an alpine meadow. Agricultural and Forest Meteorology. Vol. 297, 108278. DOI 10.1016/j.agrfor-met.2020.108278.
  • WIŚNIEWSKI P., KISTOWSKI M. 2020. Greenhouse gas emissions from cultivation of plants used for biofuel production in Poland. Atmosphere. Vol. 11(4), 394 p. 1–12. DOI 10.3390/atmos11040394.
  • WU X., WANG F., LI T., FU B., LV Y., LIU G. 2020. Nitrogen additions increase N2 O emissions but reduce soil respiration and CH4 uptake during freeze-thaw cycles in an alpine meadow. Geoderma. Vol. 36, 114157. DOI 10.1016/j.geoderma.2019.114157.
  • ZHALNINA K., DIAS R., DÖRR DE QUADROS P., DAVIS-RICHARDSON A., CAMARGO F.A.O., CLARK I.M., MC GRATH S.P., HIRSCH P.R., TRIPLETT E.W. 2015. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology. Vol. 69(2) p. 395–406. DOI 10.1007/s00248-014-0530-2.
  • ZHANG G., WANG D., YU Y. 2020b. Investigation into the effects of straw retention and nitrogen reduction on CH 4 and N2 O emissions from paddy fields in the lower Yangtze River Region, China. Sustainability. Vol. 12(4), 1683 p. 1–18. DOI 10.3390/su12041683.
  • ZHANG H., LI S., ZHANG G., FU G. 2020a. Response of soil microbial communities to warming and clipping in Alpine meadows in Northern Tibet. Sustainability. Vol. 12(14), 5617 p. 1–15. DOI 10.3390/su12145617.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Identyfikator YADDA
bwmeta1.element.baztech-6d948cc1-27c9-4653-a1b6-252f1de41f80