PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Investigation on the Bending Behavior of Weft Interlaced Multilayered Woven Fabrics for Composite Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Direct preforming processes have potential for fiber-reinforced semi-finished products, creating 3D structures with strong delamination resistance using double-flat-steel-healds. However, the shedding method limits pattern variety, necessitating alternative options for interlacing diversity. One approach is using weft yarn instead of warp yarn for interlacing. This study explores its impact on mechanical properties, focusing on bending behavior, fiber volume content, and micrograph analysis of infiltrated warp and weft interlaced structures. The result shows interesting differences in mechanical behavior regarding different weave types and test direction as well as communalities within the individual structures.
Rocznik
Strony
24--33
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • TU Dresden, Institute Textile Machinery and Textile High Performance Material Technology, 01062 Dresden
  • TU Dresden, Institute Textile Machinery and Textile High Performance Material Technology, 01062 Dresden
autor
  • TU Dresden, Institute Textile Machinery and Textile High Performance Material Technology, 01062 Dresden
  • TU Dresden, Institute Textile Machinery and Textile High Performance Material Technology, 01062 Dresden
  • TU Dresden, Institute Textile Machinery and Textile High Performance Material Technology, 01062 Dresden
  • TU Dresden, Institute Textile Machinery and Textile High Performance Material Technology, 01062 Dresden
  • TU Dresden, Institute Textile Machinery and Textile High Performance Material Technology, 01062 Dresden
Bibliografia
  • 1. Cherif C. Textile Werkstoffe für den Leichtbau. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011.
  • 2. Schegner P, Fazeli M, Sennewald C, Hoffmann G, Cherif C. Technology Development for Direct Weaving of Complex 3D Nodal Structures. Appl Compos Mater 2019; 26(1):423–32.
  • 3. Safran. LEAP-1C engine for single-aisle commercial jets; 05.25.2021 [cited 2022 Feb 11]. Available from: URL: https://www.safran-group.com/products-services/leap-1c-new-generation-engine-single-aisle-commercial-jets.
  • 4. Corbin AC, Kececi A, Boussu F, Ferreira M, Soulat D. Engineering Design and Mechanical Property Characterisation of 3D Warp Interlock Woven Fabrics. Applied Composite Materials 2018; 25(4):811–22. Available from: URL: https://doi.org/10.1007/s10443-018-9715-z.
  • 5. Maqsood M, Hussain T, Nawab Y, Shaker K, Umair M. Prediction of warp and weft yarn crimp in cotton woven fabrics. The Journal of The Textile Institute 2015; 106(11):1180–9.
  • 6. Umair M, Nawab Y, Malik MH, Shaker K. Development and characterization of three-dimensional woven-shaped preforms and their associated composites. Journal of Reinforced Plastics and Composites 2015; 34(24):2018–28.
  • 7. Archer E, Buchanan S, McIlhagger AT, Quinn JP. The effect of 3D weaving and consolidation on carbon fiber tows, fabrics, and composites. Journal of Reinforced Plastics and Composites 2010; 29(20):3162–70.
  • 8. Li M, Wang P, Boussu F, Soulat D. Investigation of the Strength Loss of HMWPE Yarns During Manufacturing Process of 3D Warp Interlock Fabrics. Applied Composite Materials 2021.
  • 9. Lefebvre M, Francois B, Daniel C. Influence of high-performance yarns degradation inside three-dimensional warp interlock fabric. Journal of Industrial Textiles 2013; 42(4):475–88.
  • 10. Gloy Y, Renkens W, Herty M, Gries T. Simulation and Optimisation of Warp Tension in the Weaving Process. J Textile Sci Eng 2015; 05(01).
  • 11. Bessette C, Decrette M, Tourlonias M, Osselin J-F, Charleux F, Coupé D et al. In-situ measurement of tension and contact forces for weaving process monitoring: Application to 3D interlock. Composites Part A: Applied Science and Manufacturing 2019; 126:105604.
  • 12. Vorhof M, Weise D, Sennewald C, Hoffmann G. New method for warp yarn arrangement and algorithm for pattern conversion for three-dimensional woven multilayered fabrics. Journal of Industrial Textiles 2018; 45:152808371881353.
  • 13. EAT GmbH “The DesignScope Company”. 3DWeave Comp [cited 2022 Apr 11]. Available from: URL: https://www.designscopecompany.com/3dweave-comp/.
  • 14. Yang X, Fan W, Ge S, Gao X, Wang S, Zhang Y et al. Advanced textile technology for fabrication of ramie fiber PLA composites with enhanced mechanical properties. Industrial Crops and Products 2021; 162:113312.
  • 15. Jabbar M, Shaker K, Nawab Y, Umair M. Effect of the stuffer yarns on the mechanical performance of novel 3D woven green composites. Composite Structures 2021; 269:114023.
  • 16. Abtew MA, Boussu F, Bruniaux P, Loghin C, Cristian I, Chen Y et al. Ballistic impact performance and surface failure mechanisms of two-dimensional and three-dimensional woven p-aramid multilayer fabrics for lightweight women ballistic vest applications. Journal of Industrial Textiles 2021; 50(9):1351–83.
  • 17. Corbin A-C, Boussu F, Ferreira M, Soulat D. Influence of 3D warp interlock fabrics parameters made with flax rovings on their final mechanical behaviour. Journal of Industrial Textiles 2020; 49(9):1123–44.
  • 18. Li M, Wang P, Boussu F, Soulat D. A review on the mechanical performance of three-dimensional warp interlock woven fabrics as reinforcement in composites. Journal of Industrial Textiles 2020:152808371989438.
  • 19. Kashif M, Hamdani, Syed Talha Ali, Nawab Y, Asghar MA, Umair M, Shaker K. Optimization of 3D woven preform for improved mechanical performance. Journal of Industrial Textiles 2018; 48(7):1206–27.
  • 20. Weise D, Vorhof M, Unger R, Hoffmann G, Cherif C. Studying the influence of different carbon-fibre-reinforced polymer patches on the mechanical properties of carbon-fibre-reinforced polymer composite. Journal of Industrial Textiles 2018; 48(3):539–58.
  • 21. Internationale Organisation für Normung. Fibre-reinforced plastic composites - Determination of flexural properties.
  • 22. Internationale Organisation für Normung. Prepregs, moulding compounds and laminates - Determination of the textile-glass and mineral-filler content.
  • 23. Internationale Organisation für Normung. Rubber and plastics test equipment - Tensile, flexural and compression types (constant rate of traverse) - Specification.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d8e847b-fa6b-4c1a-9903-444710c59350
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.