PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Miedź i jej związki nieorganiczne : w przeliczeniu na Cu

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Copper and its inorganic compounds
Języki publikacji
PL
Abstrakty
PL
Miedź jest metalem szlachetnym stosowanym do produkcji: drutu, kabli, blachy, rur oraz do otrzymywania stopów, a także w: elektrotechnice, elektronice, budownictwie i motoryzacji. Związki miedzi znalazły zastosowanie jako: fungicydy, pestycydy, algicydy, składniki nawozów mineralnych i do-datki paszowe. Narażenie zawodowe na dymy miedzi występuje u wytapiaczy i odlewników, natomiast podczas spawania, cięcia metali oraz szlifowania i polerowania przedmiotów z miedzi i mosiądzu występuje narażenie na pyły miedzi. Dymy miedzi powodują podrażnienie górnych dróg oddechowych i wrażenie metalicznego lub słodkiego smaku. Pobieranie miedzi drogą pokarmową prowadzi do zaburzeń ze strony przewodu po-karmowego i wątroby. Na podstawie danych otrzymanych w badaniach epidemiologicznych wykazano, że narażenie na miedź zwiększa ryzyko umieralności na choroby naczyń mózgowych i chorobę Parkinsona oraz sprzyja rozwojowi miażdżycy naczyń krwionośnych. Pod względem ostrej toksyczności związki miedzi można zakwalifikować do substancji szkodliwych. Pyły i rozpuszczalne związki miedzi podawane do tchawicy zwierząt wywoływały zmiany zapalne w płucach. W warunkach narażenia powtarzanego zwierząt drogą pokarmową związki miedzi działały hepatotoksycznie i nefrotoksycznie oraz wywoływały: niedokrwistość mikrocytową, nadciśnienie tętnicze skurczowe i zmiany proliferacyjne nabłonka w przedżołądku. W testach bakteryjnych związki miedzi nie działały mutagennie, natomiast w innych testach wykazywały działanie klastogenne (zmiany w strukturze chromosomów). Miedź i jej związki nie zostały sklasyfikowane pod względem działania rakotwórczego, natomiast wykazano, że związki miedzi działają embriotoksycznie, fetotoksycznie i teratogennie. Podstawą wartości najwyższego dopuszczalnego stężenia (NDS) miedzi i jej związków nieorganicznych było działanie drażniące dymów, pyłów i rozpuszczalnych soli miedzi. Narażenie zawodowe na dymy miedzi o stężeniach do 0,4 mg/m3 nie powodowało zmian chorobowych u osób narażonych i dlatego stężenie to przyjęto za wartość NOAEL dymów miedzi. Wychodząc z tej wartości i przyjmując wartość współczynnika niepewności związanego z różnicami wrażliwości osobniczej u ludzi na poziomie 2, otrzymujemy proponowaną wartość NDS dla dymów miedzi równą 0,2 mg/m3. Ponieważ nie ma nowszych danych na temat skutków zdrowotnych narażenia na pyły miedzi, dlatego proponuje się przyjęcie dla pyłów takiej samej wartości NDS jak dla dymów. Proponowana wartość NDS powinna wynosić 0,2 mg/m3 (w przeliczeniu na Cu) dla wszystkich postaci miedzi i jej związków nieorganicznych, natomiast nie ma podstaw do zaproponowania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh).
EN
Copper is a reddish-brown metal that occurs free or in many ores. Copper metal is more resistant to corrosion than iron. Copper salts are usually colored, being blue or green. The most common salts are sulfate, carbonate, oxides, and sulfide. Copper is one of the most widely used structural metal due to its high electrical and thermal conductivity. Copper inorganic compounds are utilized in fungicides, 144 and pyrotechnics, as pigments, analytical reagents and fertilizer components, as well as, for electrop-lating and many other industrial applications. The exposures to copper and its compounds occur in copper and brass foundries and smelters and in welding copper-containing metals. There is exposure to both fumes and dusts of this metal. Health effects from copper fume and dust exposure consist of irritation of the upper respiratory tract, metallic or sweet taste sensation, nausea, metal fume fever, and in some instances, discoloration of the skin and hair. Concentrations of copper fume of 1-3 mg/m3 of air for short periods resulted in altered taste response but no nausea. However, the concentrations of from 0.02-0.4 mg/m3 did not cause com-plaints. If copper salts reach the gastrointestinal tract in sufficient concentration, they act as irritants pro-ducing salivation, nausea, vomiting, gastric pain, hemorrhagic gastritis, and diarrhea. It was found that copper compounds exert klastogenic, embriotoxic, fetotoxic, and teratogenic effects. This metal and its compounds did not classified as carcinogens. The MAC (TWA) value for copper and its inorganic compounds was calculated on the basis of the NOAEL (0.4 mg/m3) value and one uncertainty factor (UF=2). As a critical effect taken into account irritation of the upper respiratory tract in the workers exposed to fume and dust of copper and its com-pounds. The MAC (TWA) value of 0.2 mg/m3 is recommended. Sufficient data were not available to recommend TLV-STEL or BEI values.
Rocznik
Tom
Strony
117--144
Opis fizyczny
Bibliogr. 83 poz., rys., tab.
Twórcy
autor
  • Collegium Medicum Uniwersytetu Jagiellońskiego 30-688 Kraków ul. Medyczna 9
  • Instytut Medycyny Pracy im. prof. dr. med. Jerzego Nofera 91-348 Łódź ul. św. Teresy od Dzieciątka Jezus 8
Bibliografia
  • 1.A world compendium – The pesticide manual, incorporating the agrochemicals handbook (1998) [Red.] C. Tomlin. London, Crop Protection Publications [cyt. za IPCS 1998].
  • 2.ACGIH (2009) Copper [komputerowa baza danych].
  • 3.ACGIH (2009) Threshold limit values for chemical substances and physical agents & Biological Exposure Indices.
  • 4.Adam B., Aslan S., Bedir A., Alvur M. (2001) The interaction between copper and coronary risk indicators. Jpn. Heart J. 42, 281–286.
  • 5.Araki S., Murata K., Uchida E., Aono H., Ozawa H. (19993) Radial and median nerve conduction veloci-ties in workers expose to lead, copper, and zinc: a follow-up study for 2 years. Environ. Res. 61, 308–316.
  • 6.Armstrong C.L., Moore R., Hackler R., Miller G.B. (1983) An outbreak of metal fume fever. Diagnostic use of urinary copper and zinc determinations. J. Occup. Med. 25, 886–888.
  • 7.Askergren A., Mellgren M. (1975) Changes in the nasal mucosa after exposure to copper salt dust. A preliminary report. Scand. J. Work Environ. Health 1, 45–49.
  • 8.Aulerich R.J., Ringer R.K., Bleavins M.R., Napolitano A. (1982) Effects of supplemental dietary copper on growth, reproductive performance and kit survival of standard dark mink and the acute toxicity of copper to mink. J. Animal Sci. 55, 337–343.
  • 9.A world (1994) A world compendium – The pesticide manual, incorporating the agrochemicals handbook. Tomlin C. (ed.), London, Crop Protection Publications [cyt. za IPCS 1998].
  • 10.Blanc P., Boushey H.A. (1993) The lung in metal fume fever. Semin. Resp. Med. 14, 212–225.
  • 11.Borak J., Cohen H., Hethmon T.A. (2000) Copper exposure and metal fume fever: lack of evidence for a causal relationship. Am. Ind. Hyg. Assoc. J. 61, 832–836.
  • 12.Camakaris J., Voskoboinik I., Mercer J.F. (1999) Molecular mechanisms of copper homeostasis. Biochem. Biophys. Res. Commun. 261, 225–232.
  • 13.Carlton W.W., Price P.S. (1973) Dietary copper and the induction of neoplasms in the rat by acetylaminof-luorene and dimethylnitrosamine. Fd. Cosmet Toxicol. 11, 827–840.
  • 14.Cavallo F., Gerber M., Marubini E., Richardson S., Barbieri A., Costa A., DeCarli H., Pujol A. (1991) Zinc and copper in breast cancer: A joint study in Northen Italy and Southern France. Cancer 67, 738–745.
  • 15.Chen L.C., Peoples S.M., Amdur M.O. (1991) Pulmonary effects of sulfur oxides on the surface of copper oxide aerosol. Am. Ind. Hyg. Assoc. J. 52, 187–191.
  • 16.Chen R., Wei L., Huang H. (1998) Mortality from lung cancer among copper miners. Br. J. Ind. Med. 50, 505–509.
  • 17.Clark J.B. (1953) The mutagenic action of various chemicals on Micrococcus aureus. Proc. Okla. Acad. Sci. 34, 114–118 [cyt. za IPCS 1998].
  • 18.Cohen H.J., Powers B.J. (2000) Particie size characterizations of copper and zinc oxide exposures of employees working in a nonferrous foundry using cascade impactors. Am. Ind. Hyg. Assoc. J. 61, 422–430.
  • 19.Denizeau F., Marion M. (1989) Genotoxic effects of heavy metals in rat hepatocytes. Cell. Biol. Toxicol. 5, 15–25.
  • 20.DFG, Deutsche Forschungsgemeinschaft (2005) List of MAK and BAT Values 2005. Wiley-VCH Verlag GmbH & Co.KGaA.
  • 21.Ellingren D.S. i in. (2007) Copper [W:] Handbook on the toxicology of metals. Elsevier 529–546.
  • 22.Felix K., Nagel W., Hartmann H.J., Weser U. (1990) Copper transfer through the intestinal wall. Serosal release of metallothionein. Biol. Metab. 3, 141–145.
  • 23.Freiberg L., Thrysin E. (1947) Copper fume fever in industry. Nord. Hyg. Tskr. 28, 5–18.
  • 24.Fuentealba I., Haywood S., Foster J. (1989) Cellular mechanisms of toxicity and tolerance in the copper-loaded rats. II. Pathogenesis of copper toxicity in the liver. Exp. Mol. Pathol. 501, 26–37.
  • 25.Gerhardsson L., Englyst V., Lundström N.G. Sandberg S., Nordberg G. (2002) Cadmium, copper and zinc in tissues of deceased copper smelter workers. J. Trace Elem. Med. Biol. 16, 261–266.
  • 26.Gleason R.P. (1968) Exposure to copper dust. Am. Ind. Hyg. Assoc. J. 29, 461–462.
  • 27.Gorell J.M., Johnson C.C., Rybicki B.A., Peterson E.L., Kortsha G.X., Brown G.G., Richardson R.J. (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20, 239–248.
  • 28.Greene F.L., Lamb L.S., Barwick M., Pappas N.J. (1987) Effect of dietary copper on colonic tumor production and aortic integrity in the rat. J. Surg. Res. 42, 503–512.
  • 29.Haddad D.S., Al-Alousi L.A., Kantarjian A.H. (1991) The effect of copper loading on pregnant rats and their offspring. Funct. Develop. Morphol. 1, 17–22.
  • 30.Hansen C.A. (1911) Copper poisoning. Metallurg. Chem. Engin. 9, 67.
  • 31.Harris E.D. (1991) Copper transport. An overview. Proc. Soc. Exp. Biol. Med. 196, 130–140.
  • 32.Hasegawa R., Nakaji Y., Kurokawa Y., Tobe M. (1989) Acute toxicity tests on 113 environmental chemicals. Research Institute of the Tohoku University, Scientific Report No. 36, 10–16 [cyt. za IPCS 1998].
  • 33.Haywood S. (1980) The effect of excess dietary copper on the liver and kidney of the male rat. J. Comp. Path. 90, 217–238.
  • 34.Haywood S., Loughran M. (1985) Copper toxicosis and tolerance in the rat. II. Tolerance – a liver protective adaptation. Liver 5, 267–275.
  • 35.Hébert C.D., Elwell M.R., Travlos G.S., Fitz C.J., Bucher J.R. (1993) subchronic toxicity of cupric sulfate administered in drinking water and feed to rats and mice. Fund. Appl. Toxicol. 21, 461–475.
  • 36.Hirano S., Sakai S., Ebihara H., Kodama N., Suzuki K.T. (1990) Metabolizm and pulmonary toxicity of intratracheally instilled cupric sulfate in rats. Toxicology 64, 223–233.
  • 37.Hirano S., Ebihara H., Sakai S., Komada N., Suzuki K.T. (1993) Pulmonary clearance and toxicity of intratracheally instilled cupric oxide in rats. Arch. Toxicol. 67, 312–317.
  • 38.Hopper W.F. (1978) Case report. Metal fume fever. Postgrad. Med. 63, 123–127.
  • 39.IPCS, International Programme on Chemical Safety (1998) Environmental Health Criteria 200. Copper. World Health Organization, Geneva.
  • 40.Kanematsu N., Hara M., Kada T. (1980) Rec assay and mutagenicity studiem on metal compounds. Mutat. Res. 77, 109–116.
  • 42.Kasama T., Tanaka H. (1988) Effects of copper administration on fetal and neonatal mice. J. Nutr. Sci. Vitaminol. 34, 595–605.
  • 43.Knobeloch L., Ziarnik M., Howard J., Theis B., Darryll F., Anderson H., Proctor M. (1994) Gastrointestin-al upsets associated with ingestion of copper-contaminated water. Environ. Health Perspect. 102, 958–961.
  • 44.Koelsch F. (1923) Metal-fume fever. J. Ind. Hyg. 5, 87–91.
  • 45.Kok F.J., Van Duijn C.M., Hofman A., Van Der Voit G.B., De Wolff F.A., Paays C.H.C., Valkenburg H.A. (1988) Serum copper and zinc and the risk of death from cancer and cardiovascular disease. Am. J. Epide-miol. 128, 352–359 [cyt. za IPCS 1998].
  • 46.Lecyk M. (1980) Toxicity of CuSO4in mice embryonic development. Zoolog. Pol. 28, 101–105.
  • 47.Lehman A.J. (1951) Chemicals in foods – A report to the association of food and drug officials on current developments: Part II. Pesticides. Q Bull. Assoc. Food Drug Off. 15, 122–133 [cyt. za IPCS 1998].
  • 48.Linder M.C. (1991) The biochemistry of copper. Plenum Press, New York [cyt. za IPCS 1998].
  • 49.Linder M.C., Wooten L., Cerveza P., Cotton S., Shulze R., Lomeli N. (1998) Copper transport. Am. J. Clin. Nutr. 67 (suppl. 5), 965/S-971/S.
  • 50.Liu C.C.F., Medeiros D.M. (1986) Excess diet copper increases systolic blood pressure in rats. Biol. Trace Elem. Res. 9, 15–24.
  • 51.Llewellyn G.C., Floyd E.A., Hoke G.D., Weekley L.B., Kimbrough T.D. (1985) Influence of dietary aflatoxin, zinc, and copper on bone size, organ weight, and body weight in hamsters and rats. Bull. Environ. Contam. Toxicol. 35, 149–156.
  • 52.Logue J.N., Koontz M.D., Hattwick M.A.W. (1982) A historical prospective mortality study of workers in copper and zinc refineries. J. Occup. Med. 24, 398–408.
  • 53.Luxon S.G. (1972) Letter to ACGIH from Industrial Hygiene Unit, H.M. Factory Inspectorate, London, England UK [cyt. za ACGIH 2009].
  • 54.Matczak W. (2000) Ocena narażenia zawodowego spawaczy miedzi. Med. Pracy 51, 11–17.
  • 55.Marzin D.R., Phi H.V. (1985) Study of the mutagenicity of metal derivatives with Salmonella typhimurium TA 102. Mutat. Res. 155, 49–51.
  • 56.Matsui S. (1980) Evaluation of a Bacillus subtillis rec-assay for the detection of mutagens which may occur in water environments. Water Res. 14, 1613–1619.
  • 57.Myers B.M., Prendergast F.G., Holman R. (1993) Alterations in hepatocyte lysosomes in experimental hepatic copper overload in rats. Gastroenterology 105, 1814–1823.
  • 58.Nriagu J.O. (1989) A global assessment of natural sources of atmospheric trace metals. Nature (Lond.) 338, 47–49.
  • 59.Olivier P., Marzin D. (1987) Study of the genotoxic potential of 48 inorganic derivatives with the SOS chromotest. Mutat. Res. 189, 263–269.
  • 60.Overvad K., Wang D.Y., Olsen J., Allen D.S., Thorling E.B., Bulbrook R.D., Hayward J.L. (1993) Copper in human mammary carcinogenesis: a case-cohort study. Am. J. Epidemiol. 137, 409–414.
  • 61.Patty’s Toxicology (2005) 5th ed., vol. 8, 1122.
  • 62.Pimental J.C., Marques F. (1969) Vineyard sprayer’s lung: a new occupational disease. Thorax 24, 678–688.
  • 63.Pimental J.C., Menezes A.P. (1975) Liver granulomas containing copper in vineyard sprayer’s lung. A new etiology of hepatic granulomatosis. Am. Rev. Resp. Dis. 111, 189–195.
  • 64.Prasad M.P.R., Krishna T.P., Pasricha S., Krishnaswamy K., Quereshi M.A. (1992) Esophageal cancer and diet a case-control study. Nutr. Cancer 18, 85–93.
  • 65.PZH, Państwowy Zakład Higieny (2006) Warszawa [informacja ustna].
  • 66.Schiotz E.H. (1949) Metal fever produced by copper dust. Proc. Int. Cong. Ind. Med. 9, 198–201.
  • 67.Sideris E.G., Charalambous S.C., Tsolomyty A., Katsaros N. (1988) Mutagenesis, carcinogenesis and the metal elements-DNA interaction. Prog. Clin. Biol. Res. 259, 13–25 [cyt. za IPCS 1998].
  • 68.Smyth H.F., Carpenter C.P., Weil C.S., Pozzani U.C., Striegel J.A., Nycum J.S. (1969) Range-finding tox-icity data: list VII. Am. Ind. Hyg. Assoc. J. 30, 470–476.
  • 69.Sokol R.J., Deveraux M.W., O’Brien K. (1993) Abnormal hepatic mitochondrial respiration and cytochrome C oxidase activity in rats with long-term copper overload. Gastroenterology 105, 178–187.
  • 70.Spitalny K.C., Brondum J., Vogt R.L., Sargent H.E., Kappel S. (1984) Drinking-water-induced copper intoxication in a Vermont family. Pediatrics 74, 1103–1106.
  • 71.Stark P. (1981) Vineyard sprayer’s lung – a rare occupational disease. J. Can. Assoc. Radiol. 32, 183–184.
  • 72.Stenhammar L. (1979) Copper poisoning: A differential diagnosis of diarrhea in children. Lakartidningen 76, 2618–2620 [cyt. za IPCS 1998].
  • 73.Tinwell H., Ashby J. (1990) Inactivity of copper sulphate in a mouse bone-marrow micronucleus assay. Mutat. Res. 245, 223–226.
  • 74.Sternlieb I. (1980) Copper and the liver. Gastroenterology 78, 1615–1628.
  • 75.Stokinger H.E. (1981) The Metals [W:] Patty’s Industrial hygiene and toxicology. 3rd Rev. ed., Vol. 2A, Toxicology 1620–1630 [Red.] G.D. Clayton, F.E. Clayton. New York, John Wiley & Sons, Inc.
  • 76.Stoner G.D., Shimkin M.B., Troxell M.C., Thompson T.L., Terry L.S. (1976) Test for carcinogenicity of metallic compounds by the pulmonary tumor response in strain A mice. Cancer Res. 36, 1744–1747.
  • 77.Suciu I., Prodan L., Lazar V., Ilea E., Cocîrla A., Olinici L., Paduraru A., Zagreanu O., Lengyel P., Gyrffi L., Andru D. (1981) Research on copper poisoning. Med. Lav. 3, 190–197.
  • 78.Toxicol. Profile, Draft Toxicological Profile for Copper. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, September 2002.
  • 79.Turnlund J.R., Keyes W.R., Anderson H.L., Acord L.L. (1989) Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am. J. Clin. Nutr. 49, 870–878.
  • 80.Van Campen D.R., Mitchell E.A. (1965) Absorption of Cu64, Zn65, Mo99, and Fe59 from ligated segments of the rat gastrointestinal tract. J. Nutr. 86, 120–124 [cyt. za IPCS 1998].
  • 81.Winge D.R., Mehra R.K. (1990) Host defenses against copper toxicity. Int. Rev. Exp. Pathol. 31, 47–83.
  • 82.Wong P.K. (1988) Mutagenicity of heavy metals. Bull. Environ. Contam. Toxicol. 40, 597–603.
  • 83.Whitman N.E. (1957) Letter to ACGIH from Industrial Health Engineering. Bethlehem Steel Co., Bethlehem PA [cyt. za ACGIH 2009].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d839391-685a-46d7-8320-9d9ac7d89b84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.