PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time delay effect in double excited human middle ear

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In cases of significant hearing loss affecting the auditory ossicles, it is possible to attach an implant. In such cases, the implant is responsible for the movement of the stapes. However, the eardrum is not removed, it remains in the system, forcing movement of the first auditory ossicle – the malleus. The aim of this research is to present the results of stapes vibrations in the human ear with an implant under dual excitation both from the eardrum and the implant using Lumped Parameter Model with 5 degrees of freedom. The model incorporates the masses of all three auditory ossicles, as well as additional masses from the implant. The delay in the system caused by the signal reaching the implant is also considered. The results relate to work that was later transformed into an ASTM standard for ear testing ensuring the accuracy of the findings.
Twórcy
  • Department of Applied Mechanics, Lublin University of Technology, ul. Nadbystrzycka 36, Lublin, Poland
  • Department of Agro-bioengineering, University of Life Sciences, ul. Akademicka 13, Lublin, Poland
autor
  • Department of Applied Mechanics, Lublin University of Technology, ul. Nadbystrzycka 36, Lublin, Poland
  • Department of Applied Mechanics, Lublin University of Technology, ul. Nadbystrzycka 36, Lublin, Poland
Bibliografia
  • 1. Hachmeister J.E. An abbreviated history of the ear: from Renaissance to present. Yale J Biol Med. 2003, 76(2), 81–6. PMID: 15369636; PMCID: PMC2582694.
  • 2. Bruss D.M., Shohet J.A. Neuroanatomy, Ear. 2023 Apr 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 31869122.
  • 3. Zwislocki J. Analysis of the Middle-Ear Function. Part I: Input Impedance. J. Acoust. Soc. Am. 1962, 34, 1514–1523.
  • 4. Rusinek R., Lenci S. Stapes vibrations induced by piezoelectric floating mass transducer. Journal of Sound and Vibration, Volume 548, 117556, 2023.
  • 5. Rusinek R., Szymanski M., Zablotni R. Biomechanics of the Human Middle Ear with Viscoelasticity of the Maxwell and the Kelvin–Voigt Type and Relaxation Effect. Materials. 2020, 13(17), 3779.
  • 6. Rusinek R., Warminski J., Szymanski M., Kecik K., Kozik K. Dynamics of the middle ear ossicles with an SMA prosthesis. Int. J. Mech. Sci. 2017, 127, 163–175.
  • 7. Rusinek R., Kecik K. Effect of linear electromechanical coupling in nonlinear implanted human middle ear. Mechanical Systems and Signal Processing 2021, 151, 107391.
  • 8. Rusinek R. Sound transmission in the first nonlinear model of middle ear with an active implant. Math. Probl. Eng. 2020, 2020, 4580467.
  • 9. MED-EL, website, www.medel.pro
  • 10. Luers J.C., Hüttenbrink K.B. Surgical anatomy and pathology of the middle ear. J Anat. 2016 Feb, 228(2), 338–53.
  • 11. Lauxmann M., Eiber A., Haag F., Ihrle S. Nonlinear stiffness characteristics of the annular ligament. J. Acoust. Soc. Am. 2014, 136, 1756–1767.
  • 12. Rusinek R. Sound transmission in the first nonlinear model of middle ear with an active implant. Mathematical Problems in Engineering, 2020, 4580467.
  • 13. Darvish B., Najarian S., Shirzad E., Khodambash R. A novel tactile force probe for tissue stiffness classification. American Journal of Applied Sciences, 2009, 6(3), 512–517.
  • 14. Standard Practice for Describing System Output of Implantable Middle Ear Hearing Devices. ASTM F2504-05 (Reapproved 2022).
  • 15. Rosowski J.J., Chien W., Ravicz M.E., Merchant S.N. Testing a method for quantifying the output of implantable middle ear hearing devices. Audiol Neurootol. 2007, 12(4), 265–76.
  • 16. Schraven S. P., Mlynski R., Dalhoff E., Heyd A., Wildenstein D., Rak K., Radeloff A., Hagen R., Gummer A. W. Coupling of an active middle-ear implant to the long process of the incus using an elastic clip attachment, Hearing Research 2016, 340, 179–184.
  • 17. Shin D. H., Seong K. W., Nakajima H. H., Puria S., Cho J. H. A piezoelectric bellows round-window driver (PBRD) for middle-ear implants. IEEE Access, 2020, 8, 137947–137954.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d7f37e9-81cd-47e8-aace-d329898b99ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.