PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the hull shape on the energy demand of a small inland vessel with hybrid propulsion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, there has been a significant development of ecological propulsion systems, which is in line with the general trend of environmentally friendly “green shipping”. The main aim is to build a safe, low-energy passenger ship with a highly efficient, emission-free propulsion system. This can be achieved in a variety of ways. The article presents the main problems encountered by designers and constructors already at the stage of designing the unit. The research conducted made it possible to create a design with an effective shape of the hull, with the prospect of an energy-efficient and safe propulsion system with good manoeuvrability. The scope of the research included towing tank tests, recalculation of the results in full-scale objects and a prediction of the energy demand of the propulsion system. The results obtained were compared to indicate power supply variants depending on the hull shape.
Rocznik
Tom
Strony
35--43
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Wydział Inżynierii Mechanicznej i Okrętownictwa, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Wydział Inżynierii Mechanicznej i Okrętownictwa, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. W. Yu, P. Zhou, H. Wang, “Evaluation on the energy efficiency and emissions reduction of a short-route hybrid sightseeing ship,” Ocean Engineering, vol. 162, pp. 34-42, August 2018. https://doi.org/10.1016/j.oceaneng.2018.05.016
  • 2. W. Litwin, W. Leśniewski, J. Kowalski, “Energy efficient and environmentally friendly hybrid conversion of inland passenger vessel,” Polish Maritime Research, vol. 24, pp. 77-84, 2017. DOI:10.1515/pomr-2017-0138
  • 3. R. D. Geertsma, R. R. Negenborn, K. Visser, J. J. Hopman, “Design and control of hybrid power and propulsion systems for smart ships: A review of developments,” Applied Energy, vol. 194, pp. 30-54, 2017. https://doi.org/10.1016/j. apenergy.2017.02.060 4.
  • 4. Y. Yuan, J. Wang, X. Yan, Q. Li, T. Long, “A design and experimental investigation of a large scale solar energy/diesel generator powered hybrid ship,” Energy, vol. 165 Part A, pp. 965-978, 2018. https://doi.org/10.1016/j. energy.2018.09.085
  • 5. Y. Yuan, J. Wang, X. Yan, B. Shen, Teng Long, “A review of multi-energy hybrid power system for ships,” Renewable and Sustainable Energy Reviews, vol. 132, October 2020. https://doi.org/10.1016/j.rser.2020.110081
  • 6. J. Michalski, Podstawy projektowania okrętów, Wydawnictwo Politechniki Gdańskiej, 2016.
  • 7. P. Wu, J. Partridge, R. Bucknall, “Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships,” Applied Energy, vol. 275, October 2020. https://doi.org/10.1016/j. apenergy.2020.115258
  • 8. J. Hou, Z. Song, H. Hofmann, J. Sun, “Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids,” Energy Conversion and Management, vol. 198, October 2019. https://doi.org/10.1016/j.enconman.2019.111929
  • 9. R. Tang, Q. An, F. Xu, X. Zhang, X. Li, J. Lai, Z. Dong, “Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method,” Energy, vol. 211, November 2020. DOI: 10.1016/j. energy.2020.119077
  • 10. T. McCoy, “Electric Ships: Past, Present, and Future,” IEEE Electrification Mag., 3, p. 4-11, 2015.
  • 11. J. S. Calton, “Chapter 15 – Azimuthing and Podded Propulsors,” in Marine Propellers and Propulsion (4th ed.), Elsevier, 2019, pp. 389-398.
  • 12. A. Ritari, J. Huotari, J. Haame, K. Tammi, “Hybrid electric topology for short sea ships with high auxiliary power availability requirement,” Energy, vol. 190, 2020. https:// doi.org/10.1016/j.energy.2019.116359
  • 13. J. Yuan, L. Yang, Qu Chen, “Intelligent energy management strategy based on hierarchical approximate global optimization for plug-in fuel cell hybrid electric vehicles,” International Journal of Hydrogen Energy, vol. 43, issue 16, 2018. DOI: 10.1016/j.ijhydene.2018.03.033
  • 14. F. Balsamo, C. Capasso, D. Lauria, O. Veneri, “Optimal design and energy management of hybrid storage systems for marine propulsion applications,” Applied Energy, vol. 278, 2020. https://doi.org/10.1016/j.apenergy.2020.115629
  • 15. P. Gelesz, A. Karczewski, J. Kozak, W. Litwin, Ł. Piątek, “Design methodology for small passenger ships on the example of the ferryboat Motława 2 driven by hybrid propulsion system,” Polish Maritime Research, vol. 24, 2017. https://doi.org/10.1515/pomr-2017-0023
  • 16. R. Vie, “Commercial experience with electric propulsion on passenger cruise vessels,” in: Proceedings of the IMarE All-Electric Ship Conference, London (UK), 1998, pp. 1–9. https://doi.org/10.1016/j.ifacol.2017.08.229
  • 17. T. A. Rodrigues, G. S. Neves, L. C. S. Gouveia, M. A. AbiRamia Jr., M. Z. Fortes, S. Gomes Jr., “Impact of electric propulsion on the electric power quality of vessels,” Electric Power Systems Research, vol. 155, pp. 350-362, 2018. https:// doi.org/10.1016/j.epsr.2017.11.006
  • 18. F. D. Kanellos, A. Anvari-Moghaddam, J. M. Guerrero, “A cost-effective and emission-aware power management system for ship with integrated full electric propulsion,” Electric Power Systems Research, vol. 150, pp. 63-75, 2017. https://doi.org/10.1016/j.epsr.2017.05.003
  • 19. M. Kunicka, W. Litwin, “Energy demand of short-range shuttle ferry with series hybrid propulsion depending on the navigation strategy,” Energies, vol. 12, pp. 1-14, 2019. https://doi.org/10.3390/en12183499
  • 20. A. M. Bassam, A. B. Phillips, S. R. Turnock, P. A. Wilson, “Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship,” International Journal of Hydrogen Energy, vol. 42, pp. 623- 635, 2017. https://doi.org/10.1016/j.ijhydene.2016.08.209
  • 21. A. Karczewski, Ł. Patek, “Reducing the environmental impact of public water transportation systems by parametric design and optimization of vessel’s hull. Study of Gdańsk’s electric passenger ferry (2015-2016),” in Education for Research, Research for Creativity, vol. 1. Architecture for the Society of Knowledge.
  • 22. J. P. Michalski, Metody przydatne do wspomaganego komputerem projektowania wstępnego statków śródlądowych. Wydawnictwo Politechniki Gdańskiej, 2007.
  • 23. J. Holtrop, “A statistical re-analysis of resistance and propulsion data”, in International Shipbuilding Progress, vol. 31, November 1984 http://resolver.tudelft.nl/ uuid:ca12a502-fc85-45e4-a078-db7284127e3c
  • 24. A. Karczewski, J. Kozak, “Comparison of selected parametric methods for prediction of inland waterways ship hull resistance in towing tank test,” Polish Maritime Research, vol. 25, 2018. https://doi.org/10.2478/pomr-2018-0025
  • 25. A. F. Molland, S. R. Turnock, D. A. Hudson, Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power, Cambridge University Press, 2011. https://doi. org/10.1017/9781316494196
  • 26. J. Holtrop, “Statistical data for the extrapolation of model performance tests,” International Shipbuilding Progress, vol. 25, 1978.
  • 27. M. Kunicka, W. Litwin, “Energy efficient small inland passenger shuttle ferry with hybrid propulsion – concept design, calculations and model tests,” Polish Maritime Research, vol. 26, 2019. https://doi.org/10.2478/ pomr-2019-0028
  • 28. ITTC Recommended Procedures and Guidelines: 7.5- 02-02-02 General Guideline for Uncertainty Analysis in Resistance Tests, ITTC, 2014. https://ittc.info/ media/4056/75-02-02-021.pdf accessed on 21.06.2021
  • 29. C. Prohaska, “A simple method for the evaluation of the form factor and the low speed wave resistance,” in Proceedings of the 11th International Towing Tank Conference, ITTC’66, Tokyo, 1966.
  • 30. ITTC Recommended Procedure, Resistance Test 7.5-02- 02-01, 2011. http://ittc.info/media/1217/75-02-02-01.pdf accessed on 21.06.2021
  • 31. W. Litwin, W. Leśniewski, D. Piątek, “Multi-sourcesupplied parallel hybrid propulsion of the inland passenger ship STA.H. Research work on energy efficiency of a hybrid propulsion system operating in the electric motor drive model,” Polish Maritime Research, vol. 12, 2019. https:// doi.org/10.2478/pomr-2013-0031
  • 32. W. Litwin, W. Leśniewski, D. Piątek, “Experimental research on the energy efficiency of a parallel hybrid drive for an inland ship,” Energies, vol. 12, issue 9, 2019. https:// doi.org/10.3390/en12091675
  • 33. S. Jafarzadeh, I. Schjolberg, “Operational profiles of ships in Norwegian waters: An activity-based approach to assess the benefits of hybrid and electric propulsion,” Transportation Research Part D: Transport and Environment, vol. 65, pp. 500-523, 2018. https://doi.org/10.1016/j.trd.2018.09.021 34.
  • 34. J. Holtrop, “A statistical re-analysis of resistance and propulsion data,” Marine Technology, vol. 38, no. 3, July 2001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d799a36-71b1-4dec-8021-3da18218e638
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.