PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Terrestrial Laser Scanning and Global Navigation Satellite System in the Mining Area

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie naziemnego skaningu laserowego i globalnego systemu nawigacji satelitarnej na obszarze górniczym
Języki publikacji
EN
Abstrakty
EN
Terrestrial Laser Scanning and Global Navigation Satellite System technologies are increasingly prevalent in geodetic mapping work, playing a significant role in mine surveying tasks such as drawing maps for volume calculation, monitoring displacement, and deformation of mine surfaces and structures above mine tunnels. Currently, there are many studies on the application of these technologies in various aspects of mine surveying work. This paper will synthesize these studies to evaluate the effectiveness of applying GNSS and TLS technologies in mining surveying. The authors has reviewed 44 papers/projects in recent years and found that these technologies are developing rapidly, with the accuracy of coordinate and altitude measurement increasingly improving to approximately millimeters in both horizontal and vertical directions.
PL
Technologie naziemnego skanowania laserowego (TLS) i globalnego systemu nawigacji satelitarnej (GNSS) są coraz bardziej powszechne w pracach związanych z kartowaniem geodezyjnym, odgrywając znaczącą rolę w zadaniach geodezyjnych w kopalniach, takich jak tworzenie map do obliczania objętości, monitorowanie przemieszczeń i deformacji powierzchni i konstrukcji nad wyrobiskami górniczymi. Obecnie prowadzonych jest wiele badań nad zastosowaniem tych technologii w różnych aspektach prac geodezyjnych w kopalniach. W artykule dokonana została synteza tych badań w celu oceny efektywności zastosowania technologii GNSS i TLS w górnictwie. Autorzy dokonali przeglądu 44 artykułów/projektów z ostatnich lat i stwierdzają, że technologie te bardzo szybko się rozwijają, a dokładność pomiaru współrzędnych i wysokości wzrasta do poziomu pojedynczych milimetrów zarówno w kierunku poziomym, jak i pionowym.
Rocznik
Strony
55--61
Opis fizyczny
Bibliogr. 44 poz., zdj.
Twórcy
  • Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, Hanoi, Vietnam
  • Faculty of Geo-Data Sciences, Geodesy and Environmental Engineering, AGH University of Kraków, Poland
autor
  • Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, Hanoi, Vietnam
Bibliografia
  • 1. Jing-Xiang, G., H.J.P.E. Hong, and P. Science, Advanced GNSS technology of mining deformation monitoring. 2009. 1(1): p. 1081-1088.
  • 2. Behera, A. and K.S. Rawat, A Comprehensive Review on Mining Subsidence and its Geo-environmental Impact. Journal of Mines, Metals & Fuels, 2023. 71(9).
  • 3. Owczarz, K. A review of geodetic and remote sensing methods used for detecting surface displacements caused by mining. in IOP Conference Series: Earth and Environmental Science. 2020. IOP Publishing.
  • 4. Suh, J., An overview of GIS-based assessment and mapping of mining-induced subsidence. Applied Sciences, 2020. 10(21): p. 7845.
  • 5. Cai, Y., et al., A review of monitoring, calculation, and simulation methods for ground subsidence induced by coal mining. International Journal of Coal Science & Technology, 2023. 10(1): p. 32.
  • 6. Hejmanowski, R., et al., An analysis applying InSAR of subsidence caused by nearby mining-induced earthquakes. Geosciences, 2019. 9(12): p. 490.
  • 7. Yu, Y., et al., Subsidence mechanism and stability assessment methods for partial extraction mines for sustainable develop-ment of mining cities—A review. Sustainability, 2018. 10(1): p. 113.
  • 8. Lipecki, T. and K.T.T. HUONG, The development of terrestrial laser scanning technology and its applications in mine shafts in Poland. Inżynieria Mineralna, 2020. 1(2).
  • 9. Bazarnik, M. Slope stability monitoring in open pit mines using 3D terrestrial laser scanning. in E3S Web of Conferences. 2018. EDP Sciences.
  • 10. Kekeç, B., et al., Applications of Terrestrial Laser Scanning (TLS) in Mining: A Review. Türkiye Lidar Dergisi, 2021. 3(1): p. 31-38.
  • 11. Wang, W., et al., Applications of terrestrial laser scanning for tunnels: a review. Journal of Traffic and Transportation Engineering (English Edition), 2014. 1(5): p. 325-337.
  • 12. Smits, J., Application of 3D terrestrial laser scanning to map building surfaces. Journal of Architectural Conservation, 2011. 17(1): p. 81-94.
  • 13. Berenyi, A., T. Lovas, and A. Barsi, Terrestrial laser scanning–civil engineering applications. International Archives of Photo-grammetry, Remote Sensing and Spatial Information Sciences, 2010. 38(Part 5): p. 80-85.
  • 14. Fröhlich, C. and M. Mettenleiter, Terrestrial laser scanning–new perspectives in 3D surveying. International archives of photo-grammetry, remote sensing and spatial information sciences, 2004. 36(Part 8): p. W2.
  • 15. Wu, C., et al., Application of terrestrial laser scanning (TLS) in the architecture, engineering and construction (AEC) industry. Sensors, 2021. 22(1): p. 265.
  • 16. Buckley, S.J., et al., Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 2008. 165(3): p. 625-638.
  • 17. Kuczyńska, G. and M. Stawska, Modern applications of terrestrial laser scanning. Горный информационно-аналитический бюллетень (научно-технический журнал), 2021(1): p. 160-169.
  • 18. Mukupa, W., et al., A review of the use of terrestrial laser scanning application for change detection and deformation monitor-ing of structures. Survey review, 2017. 49(353): p. 99-116.
  • 19. Fengyun, G. and X. Hongquan. Status and development trend of 3D laser scanning technology in the mining field. in 2013 the International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2013). 2013. Atlantis Press.
  • 20. Korandová, B. and M. Krupa, The application of terrestrial laser scanning for the management of mining in real time. Interna-tional Multidisciplinary Scientific GeoConference: SGEM, 2018. 18(2.2): p. 1011-1018.
  • 21. Liu, C., et al., Mine surface deformation monitoring using modified GPS RTK with surveying rod: Initial results. Survey Review, 2015. 47(341): p. 79-86.
  • 22. Issabek, T., V. Dyomin, and D. Ivadilinova, Methods for monitoring the earth surface displacement at points of small geodetic network under the underground method of coal development. Natsional'nyi Hirnychyi Universytet. Naukovyi Visnyk, 2019(2): p. 13-20.
  • 23. Tondaś, D., K. Kazmierski, and J. Kapłon, Real-time and near real-time displacement monitoring with GNSS observations in the mining activity areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023.
  • 24. Costantino, D. and M.G. Angelini, Geodetic monitoring applied to a mine area. Applied Geomatics, 2011. 3: p. 61-74.
  • 25. Brown, N., S. Kaloustian, and M. Roeckle. Monitoring of open pit mines using combined GNSS satellite receivers and robotic total stations. in Slope Stability 2007: Proceedings of the 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering. 2007. Australian Centre for Geomechanics.
  • 26. Szczerbowski, Z. and J. Jura, Mining induced seismic events and surface deformations monitored by GPS permanent stations. Acta Geodyn. Geomater, 2015. 12(3): p. 179.
  • 27. Pham, C.K., D.T. Tran, and V.H. Nguyen, GNSS/CORS-Based Technology for Real-Time Monitoring of Landslides on Waste Dump–A Case Study at the Deo Nai South Dump, Vietnam. Inżynieria Mineralna, 2020. 1(2): p. 181-191.
  • 28. Bazanowski, M., A. Szostak-Chrzanowski, and A. Chrzanowski, Determination of GPS session duration in ground deforma-tion surveys in mining areas. Sustainability, 2019. 11(21): p. 6127.
  • 29. Kim, D., et al., Local deformation monitoring using GPS in an open pit mine: initial study. GPS Solutions, 2003. 7: p. 176-185.
  • 30. Tao, T., et al., Real-time monitoring rapid ground subsidence using GNSS and Vondrak filter. Acta Geophysica, 2019. 67: p. 133-140.
  • 31. Bian, H.-f., et al., Monitoring large-area mining subsidence by GNSS based on IGS stations. Transactions of Nonferrous Metals Society of China, 2014. 24(2): p. 514-519.
  • 32. Bing, S., et al., Reconstructing DEM using TLS point cloud data and NURBS surface. Transactions of Nonferrous Metals Society of China, 2015. 25(9): p. 3165-3172.
  • 33. Gu, Y., et al., Study on subsidence monitoring technology using terrestrial 3D laser scanning without a target in a mining area: An example of Wangjiata coal mine, China. Bulletin of engineering geology and the environment, 2020. 79: p. 3575-3583.
  • 34. Ghabraie, B., et al., Application of 3D laser scanner, optical transducers and digital image processing techniques in physical modelling of mining-related strata movement. International Journal of Rock Mechanics and Mining Sciences, 2015. 80: p. 219-230.
  • 35. Li, J. and L. Wang, Mining subsidence monitoring model based on BPM-EKTF and TLS and its application in building mining damage assessment. Environmental Earth Sciences, 2021. 80(11): p. 396.
  • 36. Wang, L., et al., Automatic deformation extraction method of buildings in mining areas based on TLS point clouds. IEEE Access, 2021. 10: p. 127817-127824.
  • 37. Kukutsch, R., et al., Possibility of convergence measurement of gates in coal mining using terrestrial 3D laser scanner. Journal of sustainable mining, 2015. 14(1): p. 30-37.
  • 38. Van der Merwe, J. and D.C. Andersen, Applications and benefits of 3D laser scanning for the mining industry. Journal of the Southern African institute of Mining and Metallurgy, 2013. 113(3): p. 00-00.
  • 39. Jaśkowski, W., et al. Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory. in E3S Web of Conferences. 2018. EDP Sciences.
  • 40. Nghia, N.V., et al., Applied Terrestrial Laser Scanning for coal mine high definition mapping. World of Mining-Surface and Underground, 2019. 71(4): p. 237-242.
  • 41. Long, N.Q., et al., Accuracy assessment of mine walls’ surface models derived from terrestrial laser scanning. International Journal of Coal Science & Technology, 2018. 5: p. 328-338.
  • 42. Blistan, P., et al., TLS and SfM approach for bulk density determination of excavated heterogeneous raw materials. Minerals, 2020. 10(2): p. 174.
  • 43. Conforti, D. and T. Optech, Using Static and Mobile Laser Scanners to Measure and Manage Open Pit Mines. Canada: Optech Incorporated, 2017.
  • 44. Xu, Z., et al., Registration of terrestrial laser scanning surveys using terrain-invariant regions for measuring exploitative vol-umes over open-pit mines. Remote Sensing, 2019. 11(6): p. 606.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d72263d-3f0b-4b7b-99c0-3fb18927bafe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.