PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minimization of Energy and Service Latency Computation Offloading using Neural Network in 5G NOMA System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The future Internet of Things (IoT) era is anticipated to support computation-intensive and time-critical applications using edge computing for mobile (MEC), which is regarded as promising technique. However, the transmitting uplink performance will be highly impacted by the hostile wireless channel, the low bandwidth, and the low transmission power of IoT devices. Using edge computing for mobile (MEC) to offload tasks becomes a crucial technology to reduce service latency for computation-intensive applications and reduce the computational workloads of mobile devices. Under the restrictions of computation latency and cloud computing capacity, our goal is to reduce the overall energy consumption of all users, including transmission energy and local computation energy. In this article, the Deep Q Network Algorithm (DQNA) to deal with the data rates with respect to the user base in different time slots of 5G NOMA network. The DQNA is optimized by considering more number of cell structures like 2, 4, 6 and 8. Therefore, the DQNA provides the optimal distribution of power among all 3 users in the 5G network, which gives the increased data rates. The existing various power distribution algorithms like frequent pattern (FP), weighted least squares mean error weighted least squares mean error (WLSME), and Random Power and Maximal Power allocation are used to justify the proposed DQNA technique. The proposed technique which gives 81.6% more the data rates when increased the cell structure to 8. Thus 25% more in comparison to other algorithms like FP, WLSME Random Power and Maximal Power allocation.
Twórcy
  • REVA University, Bangalore, and Karnataka, India
  • REVA University and HKBK College of Engineering, Bangalore, and Karnataka, India
Bibliografia
  • [1] Bai, T., Pan, C., Deng, Y., Elkashlan, M., Nallanathan, A., & Hanzo, L. (2020). Latency minimization for intelligent reflecting surface aided mobile edge computing. IEEE Journal on Selected Areas in Communications, 38(11), 2666-2682. http://doi.org/10.1109/JSAC.2020.3007035
  • [2] Mishra, S. K., Puthal, D., Sahoo, B., Sharma, S., Xue, Z., & Zomaya, A. Y. (2018). Energy-efficient deployment of edge dataenters for mobile clouds in sustainable IoT. IEEE Access, 6, 56587-56597. http://doi.org/10.1109/ACCESS.2018.2872722
  • [3] Thananjeyan, S., Chan, C. A., Wong, E., & Nirmalathas, A. (2020). Mobility-aware energy optimization in hosts selection for computation offloading in multi-access edge computing. IEEE Open Journal of the Communications Society, 1, 1056-1065. http://doi.org/10.1109/OJCOMS.2020.3008485
  • [4] Li, S., Tao, Y., Qin, X., Liu, L., Zhang, Z., & Zhang, P. (2019). Energy-aware mobile edge computation offloading for IoT over heterogenous networks. IEEE Access, 7, 13092-13105.
  • [5] Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., & Zhang, Y. (2016). Energy-efficient offloading for edge computing for mobile in 5G heterogeneous networks. IEEE access, 4, 5896-5907. http://doi.org/10.1109/ACCESS.2019.2893118
  • [6] Xu, C., Zheng, G., & Tang, L. (2020). Energy-aware user association for NOMA-based edge computing for mobile using matching-coalition game. IEEE Access, 8, 61943-61955. http://doi.org/10.1109/ACCESS.2020.2984798
  • [7] Wu, B., Zeng, J., Ge, L., Su, X., & Tang, Y. (2019). Energy-latency aware offloading for hierarchical mobile edge computing. IEEE Access, 7, 121982-121997. http://doi.org/10.1109/ACCESS.2019.2938186
  • [8] Wang, J., Wu, W., Liao, Z., Sangaiah, A. K., & Sherratt, R. S. (2019). An energy-efficient off-loading scheme for low latency in collaborative edge computing. IEEE Access, 7, 149182-149190. http://doi.org/10.1109/ACCESS.2019.2946683
  • [9] Cheng, K., Teng, Y., Sun, W., Liu, A., & Wang, X. (2018, May). Energy-efficient joint offloading and wireless resource allocation strategy in multi-MEC server systems. In 2018 IEEE international conference on communications (ICC) (pp. 1-6). IEEE. http://doi.org/10.1109/ICC.2018.8422877
  • [10] Joshi, S., & Mallik, R. K. (2019, April). Cooperative NOMA with AF Relaying over Nakagami-m Fading in a D2D Network. In 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring) (pp. 1-6). IEEE. http://doi.org/10.1109/VTCSpring.2019.8746415
  • [11] Xu, J., Palanisamy, B., Ludwig, H., & Wang, Q. (2017, June). Zenith: Utility-aware resource allocation for edge computing. In 2017 IEEE international conference on edge computing (EDGE) (pp. 47-54). IEEE. http://doi.org/10.1109/IEEE.EDGE.2017.15
  • [12] Liu, M., Song, T., Hu, J., Yang, J., & Gui, G. (2018). Deep learning-inspired message passing algorithm for efficient resourceallocation in cognitive radio networks. IEEE Transactions on Vehicular Technology, 68(1), 641-653. http://doi.org/10.1109/TVT.2018.2883669
  • [13] Dang, T., & Peng, M. (2019). Joint radio communication, caching, and computing design for mobile virtual reality delivery in fog radio access networks. IEEE Journal on Selected Areas in Communications, 37(7), 1594-1607. http://doi.org/10.1109/JSAC.2019.2916486
  • [14] Barbarossa, S., Sardellitti, S., & Di Lorenzo, P. (2014). Communicating while computing: Distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Processing Magazine, 31(6), 45-55. http://doi.org/10.1109/MSP.2014.2334709
  • [15] Zhang, J., Lee, H. W., & Modiano, E. (2019, March). On the robustness of distributed computing networks. In 2019 15th International Conference on the Design of Reliable Communication Networks (DRCN) (pp. 122-129). IEEE.
  • [16] Fadlullah, Z. M., & Kato, N. (2020). HCP: Heterogeneous computing platform for federated learning based collaborative content caching towards 6G networks. IEEE Transactions on Emerging Topics in Computing, 10(1), 112-123. http://doi.org/10.1109/TETC.2020.2986238
  • [17] Chen, S., Zheng, Y., Lu, W., Varadarajan, V., & Wang, K. (2019). Energy-optimal dynamic computation offloading for industrial IoT in fog computing. IEEE Transactions on Green Communications and Networking, 4(2), 566-576. http://doi.org/10.1109/TGCN.2019.2960767
  • [18] Gangadharappa, S. P., & Ahmed, M. R. Power Allocation Using Multi-Objective Sum Rate Based Butterfly Optimization Algorithm for NOMA Network. International Journal of Intelligent Engineering & Systems, 2022.
  • [19] P G, S., & Ahmed, M. R. (2022). The Performance Evaluation of NOMA for 5G systems using Automatic Deployment of multi Users. International Journal of Electronics and Telecommunications, 68. http://doi.org/10.24425/ijet.2022.139887
  • [20] Lai, C. F., Chien, W. C., Yang, L. T., & Qiang, W. (2019). LSTM and edge computing for big data feature recognition of industrial electrical equipment. IEEE Transactions on Industrial Informatics, 15(4), 2469-2477. http://doi.org/10.1109/TII.2019.2892818
  • [21] Wu, Q., & Zhang, R. (2019, May). Beamforming optimization for intelligent reflecting surface with discrete phase shifts. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 7830-7833). IEEE. http://doi.org/10.1109/ICASSP.2019.8683145
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
2. This work was supported by REVA University, Bangalore, and Karnataka, India.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d70b514-d867-45d1-9455-d738f7238f79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.