PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tumor dose enhancement by gold nanoparticles in a 6 MV photon beam: a Monte Carlo study on the size effect of nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study after benchmarking of Monte Carlo (MC) simulation of a 6 MV linac, the simulation model was used for estimation of tumor dose enhancement by gold nanoparticles (GNPs). The 6 MV photon mode of a Siemens Primus linac was simulated and a percent depth dose and dose profiles values obtained from the simulations were compared with the corresponding measured values. Dose enhancement for various sizes and concentrations of GNPs were studied for two cases with and without the presence of a flattening filter in the beam’s path. Tumor dose enhancement with and without the presence of the flattening filter was, respectively 1–5 and 3–10%. The maximum dose enhancement was observed when 200 nm GNPs was used and the concentration was 36 mg/g tumor. Furthermore, larger GNPs resulted in higher dose values in the tumor. After careful observation of the dose enhancement factor data, it was found that there is a poor relation between the nanoparticle size and dose enhancement. It seems that for high energy photons, the dose enhancement is more affected by the concentration of nanoparticles than their size.
Czasopismo
Rocznik
Strony
275--280
Opis fizyczny
bibliogr. 29 poz., rys.
Twórcy
autor
  • Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz, P. O. Box 61349-37333, Iran, Tel.: +98 611 334 8420-24, Fax: +98 611 332 9200
autor
  • Medical Physics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
  • Nuclear Medicine Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Bibliografia
  • 1. Bahreyni Toossi MT, Ghorbani M, Mehrpouyan M et al. (2012) A Monte Carlo study on tissue dose enhancement in brachytherapy: a comparison between gadolinium and gold nanoparticles. Australas Phys Eng Sci Med 35:177–185
  • 2. Berbeco R, Korideck H, Ngwa W et al. (2012) In vitro dose enhancement from gold nanoparticles under different clinical MV photon beam configurations. Med Phys 39;6:3900
  • 3. Brun E, Sanche L, Sicard-Roselli C (2009) Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf B 72:128–134
  • 4. Butterworth KT, Wyer JA, Brennan-Fournet M et al. (2008) Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl 1:45–66
  • 5. Chithrani DB, Jelveh F, Jalali F et al. (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728
  • 6. Cho SH (2005) Estimation of tumor dose enhancement due to GNPs during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50:163–173
  • 7. Dowson P, Penhaligon M, Smith E, Saunders J (1987) Iodinated contrast agents as ‘radiosensitizers’. Br J Radiol 60:201–203
  • 8. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109
  • 9. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of GNPs to enhance radiotherapy in mice. Phys Med Biol 49:309–315
  • 10. Herold DM, Das IJ, Stobbe CC, Iyer RV, Chapman JD (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364
  • 11. Iwamoto KS, Cochran ST, Winter J et al. (1987) Radiation dose enhancement therapy with iodine in rabbit VX-2 brain tumours. Radiother Oncol 8:161–170
  • 12. Jones BL, Krishnan S, Cho SH (2010) Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys 37:3809–3816
  • 13. Lechtman E, Chattopadhyay N, Cai Z et al. (2011) Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol 56:4631–4647
  • 14. Leung MK, Chow JC, Chithrani BD et al. (2011) Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38:624–631
  • 15. Liu CJ, Wang CH, Chen ST et al. (2010) Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 55:931–945
  • 16. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Int J Immunopharmacol 3:319–328
  • 17. Mello RS, Callison H, Winter J, Kagan AR, Norman A (1983) Radiation dose enhancement in tumours with iodine. Med Phys 10:75–78
  • 18. Mesa AV, Norman A, Solberg TD, Demarco JJ, Smathers JB (1999) Dose distribution using kilovoltage X-ray and dose enhancement from iodine contrast agents. Phys Med Biol 44:1955–1968
  • 19. Mesbahi A, Seyed Nejad F (2007) Dose attenuation effect of hip prostheses in a 9-MV photon beam: commercial treatment planning system versus Monte Carlo calculations. Radiat Med 25:529–535
  • 20. Ngwa W, Makrigiorgos GM, Berbeco RI (2012) Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus. Med Phys 39:392–398
  • 21. Robar JL (2006) Generation and modeling of megavoltage photon beams for contrast-enhanced radiation therapy. Phys Med Biol 51:5487–5504
  • 22. Robar JL, Riccio SA, Martin MA (2002) Tumor dose enhancement using modified megavoltage photon beams and contrast media. Phys Med Biol 47:2433–2449
  • 23. Rose JH, Norman A, Ingram M (1994) First experience with radiation therapy of small brain tumours delivered by a computerized tomography scanner. Int J Radiat Oncol Biol Phys 30:24–25
  • 24. Sardari D, Maleki R, Samavat H, Esmaeeli A (2010) Measurement of depth-dose of linear accelerator and simulation by use of Geant4 computer code. Radiother Oncol 15:64–68
  • 25. Unezaki S, Maruyama K, Hosoda JI et al. (1996) Direct measurement of the extravasation of polyethyleneglycol--coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int J Pharm 144:11–17
  • 26. Verhaegen F, Reniers B, Deblois E et al. (2005) Dosimetric and microdosimetric study of contrast-enhanced radiotherapy with kilovolt X-rays. Phys Med Biol 50:3555–3569
  • 27. Zhang SX, Gao J, Buchholz TA et al. (2009) Quantifying tumor-selective radiation dose enhancements using GNPs: a Monte Carlo simulation study. Biomed Microdevices 11;4:925–933
  • 28. Zhang XD, Guo ML, Wu HY et al. (2009) Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int J Nanomed 4:165–173
  • 29. Zhang XD, Wu D, Shen X et al. (2011) Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed 6:2071–2081
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d68f9d4-77c6-4c58-9fa9-e47035ae07a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.