Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The role of fuzzy δ-open set is highly significant in the study of fuzzy topology initiated by Ganguly and Saha [S. Ganguly and S. Saha, A note on δ-continuity and δ-connected sets in fuzzy set theory, Simon Stevin 62 (1988), no. 2, 127-141]. This article begins with the introduction of δ-I-open covers in a mixed fuzzy ideal topological space. After that, we introduce δ-I-compactness and then some properties of its are discussed therein. It is shown that the aforesaid compactness is the weaker form of fuzzy compactness. Moreover, we show that if we retopologize the fuzzy topology then in the new environment fuzzy δ-I-compactness and fuzzy compactness are equivalent. In addition, we introduce two different notions of continuity and investigate the behawior between fuzzy δ-I-compactness and fuzzy compactness.
Wydawca
Czasopismo
Rocznik
Tom
Strony
129--135
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Department of Mathematics, NIT Agartala, Agartala(W), Pin-799046, India
autor
- Department of Mathematics, NIT Agartala, Agartala(W), Pin-799046, India
autor
- Department of Mathematics, NIT Agartala, Agartala(W), Pin-799046, India
autor
- Department of Mathematics, NIT Agartala, Agartala(W), Pin-799046, India
Bibliografia
- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [2] N. R. Das and P. C. Baishya, Mixed fuzzy topological spaces, J. Fuzzy Math. 3 (1995), no. 4, 777-784.
- [3] S. Ganguly and S. Saha, A note on δ-continuity and δ-connected sets in fuzzy set theory, Simon Stevin 62 (1988), no. 2, 127-141.
- [4] M. Gupta, P. K. Kamthan and N. R. Das, Bi-locally convex spaces and Schauder decompositions, Ann. Mat. Pura Appl. (4) 133 (1983), 267-284.
- [5] I. M. Hanafy, δ-compactness in fuzzy topological spaces, Math. Japon. 51 (2000), no. 2, 229-234.
- [6] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), no. 3, 621-633.
- [7] M. N. Mukherjee and S. P. Sinha, Fuzzy Θ-closure operator on fuzzy topological spaces, Internat. J. Math. Math. Sci. 14 (1991), no. 2, 309-314.
- [8] W. Orlicz, Linear operations in Saks spaces. II, Studia Math. 15 (1955), 1-25.
- [9] P. M. Pu and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), no. 2, 571-599.
- [10] R. Rigelhof, Topology. Vol. I., Academic Press, New York, 1966.
- [11] D. Sarkar, Fuzzy ideal theory: Fuzzy local function and generated fuzzy topology, Fuzzy Sets and Systems 87 (1997), no. 1, 117-123.
- [12] P. K. Subramanian, Two-norm spaces and decompositions of Banach spaces. I, Studia Math. 43 (1972), 179-194.
- [13] B. C. Tripathy and G. C. Ray, Mixed fuzzy ideal topological spaces, Appl. Math. Comput. 220 (2013), 602-607.
- [14] B. C. Tripathy and G. C. Ray, On mixed fuzzy topological spaces and countability, Soft Comput. 16 (2012), no. 10, 1691-1695.
- [15] B. C. Tripathy and G. C. Ray, Fuzzy δ-l-continuity in mixed fuzzy ideal topological spaces, J. Appl. Anal. 24 (2018), no. 2, 233-239.
- [16] R. Vaidyanathaswamy, The localisation theory in set-topology, Proc. Indian Acad. Sci. Sect. A. 20 (1944), 51-61.
- [17] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103-118.
- [18] A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68.
- [19] C. K. Wong, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974), 316-328.
- [20] C. K. Wong, Fuzzy topology, in: Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academic Press, New York (1975), 171-190.
- [21] S. Yüksel, A. Açıkgöz and T. Noiri, On δ-I-continuous functions, Turkish J. Math. 29 (2005), no. 1, 39-51.
- [22] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d642a88-af7c-4667-ade7-05781c2f4947
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.