Identyfikatory
Warianty tytułu
Unconventional methods of extractions : green extraction
Języki publikacji
Abstrakty
Extraction is a method of extracting a chemical from a solution or mixture of solid substances. Conventional methods of extraction, for example, Soxhlet method, require the use of hazardous solvents, are time-consuming and cause degradation of the extracted compounds. Green extraction is characterized by the speed, it gives a quantitative recovery of the extract and does not cause degradation of the components. It takes place at a lower energy consumption than conventional extraction. A number of novel alternatives to conventional extraction techniques have been proposed, including ultrasonic assisted extraction (UAE), supercritical fluid extraction (SFE), enzyme extraction or pulsed electric field. These techniques allow to reduce or eliminate the use of toxic solvents, improve process efficiency and extract quality. The temperature of the above-mentioned processes is low, which affects the behavior of temperature-sensitive substances. The widely used "green extraction" is SFE - extraction with supercritical fluid. The solvent is a supercritical fluid, most often carbon dioxide. Ultrasonic extraction is environmentally friendly, easy to use, versatile and relatively cheap compared to other innovative techniques. This technique can be used to extract, for example, polysaccharides, essential oils, proteins, peptides, dyes, pigments and bioactive substances. Extraction with the use of pulsed electric field is used to extract mainly polyphenols and other bioactive components. Extraction with enzymes (mainly pectinases, cellulases and hemicellulases) is widely used in the food industry, eg for clarifying beer and juices. The extraction yield depends on the solvent system, temperature, enzyme function, substrate availability and pH.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
465--479
Opis fizyczny
Bibliogr. 66 poz.
Twórcy
autor
- Uniwersytet Przyrodniczy w Lublinie, Wydział Nauk o Żywności i Biotechnologii, Katedra Analizy i Oceny Jakości Żywności
autor
- Uniwersytet Przyrodniczy w Lublinie, Wydział Nauk o Żywności i Biotechnologii, Katedra Analizy i Oceny Jakości Żywności
Bibliografia
- [1] M. Oroian, I. Escriche, Food Res. Int., 2015, 74, 10.
- [2] F. Chemat, N. Rombaut, A. Sicaire, A. Meullemiestre, A. Fabiano-Tixier, M. Abert-Vian, Ultras. Sonochem., 2017, 34, 540.
- [3] J. Banerjee, R. Singh, R. Vijayaraghavan, D. MacFarlane, A. Patti, A. Arora, Food Chem., 2017, 225, 10.
- [4] F. Chemat, N. Rombaut, A. Meullemiestre, M. Turk, S. Perine, A. Fabiano-Tixier, M. Albert-Vian, Innov. Food Sci. Emerg., 2017, 41, 357.
- [5] M. Herrero, A. Cifuentes, E. Ibañez, Food Chem., 2006, 98, 136.
- [6] L. Wang, C. Weller, Trends Food Sci. Tech., 2006, 17, 300.
- [7] B. Tiwari, TrAC-Trend Anal. Chem., 2015, 71, 100.
- [8] Y. Kua, S. Gan, A. Morris, H. Ng, Sustain. Chem. Pharm., 2016, 4, 21.
- [9] H. Barbosa, M. de Melo, M. Coimbra, C. Passos, C. Silva, J. Supercrit. Fluids, 2014, 85, 165.
- [10] M. Herrero, M. Castro-Puyana, J. Mendiola, E. Ibañez, Trends Anal. Chem., 2013, 43, 67.
- [11] T. Belwal, S. Ezzat, L. Rastrelli, I. Bhatt, M. Daglia, A. Baldi, H. Devkota, I. Orhan, J. Patra, G. Das, C. Anandharamakrishnan, L. Gomez-Gomez, S. Nabavi, S. Nabavi, A. Atanasov, TrAC Trend Anal Chem., 2018, 100, 82.
- [12] A. Sánchez-Camargo, F. Parada-Alonso, E. Ibáñez, A. Cifuentes, J. Sep. Sci., 2019, 42, 243.
- [13] M. de Andrade Lima, I. Kestekoglou, D. Charalampopoulos, A. Chatzifragkou, Molecules, 2019, 24, 466.
- [14] A. Banafsheh, S. Ghobadi, Life Sci., 2016, 146, 163.
- [15] M. Sun, F. Temelli, J. Supercrit. Fluids, 2006, 37, 397.
- [16] M. Lenucci, M. De Caroli, P. Marrese, A. Iurlaro, L. Rescio, V. Böhm, G. Dalessandro, G. Piro, Food Chem.,2015, 170, 193.
- [17] S. Comim, K. Madella, J. Oliveira, S. Ferreira, J. Supercrit. Fluids,2010, 54, 30.
- [18] K. Ghafoor, J. Park, Y. Choi, Innov. Food Sci. Emerg. Technol., 2010, 11, 485.
- [19] Q. Lang, C. Wai, Talanta, 2001, 53, 771.
- [20] Y. Ling, H. Teng, C. Cartwright, J. Chromatogr. A, 1999, 835, 145.
- [21] A. Menaker, M. Kravets, M. Koel A. Orav, A. CR Chim., 2004, 7, 629.
- [22] B. Pavlić, O. Bera, S. Vidovic, L. Ilić, Z. Zekovic, J. Supercrit. Fluids, 2017, 130, 327
- [23] B. Pavlic, O. Bera, N. Teslić, S. Vidovic, G. Parpinello, Z. Zeković, Ind. Crop Prod., 2018, 120, 305.
- [24] Da Porto, D. Decorti, A. Natolino, J. Supercrit. Fluids, 2014, 87, 1.
- [25] L. Roseiro, L. Duarte, D. Oliveira, R. Roque, M. Bernardo-Gil, A. Martins, Ind. Crops Prod., 2013, 47, 132.
- [26] A. Serra, I. Seabra, M. Braga, M. Bronze, H. de Sousa, C. Duarte, J. Supercrit. Fluids, 2010, 55, 184.
- [27] J. Botelho, N. Medeiros, A. Rodrigues, M. Araujo, N. Machado, A. Guimaräes, I. Santos, W. Gomes-Leal, R. Carvalho Junior, J. Supercrit. Fluids, 2014, 93, 49.
- [28] M. Sajfrtová, I. Licková, M. Wimmerová, H. Sovová, Z. Wimmer, Int. J. Mol. Sci., 2010, 11, 1842.
- [29] K. Nyam, C. Tan, O. Lai, Long, Y. CheMan, Food Bioprocess Technol., 2011, 4, 1432.
- [30] M. De Jesus Raposo, R. De Morais, A. De Morais, Life Sci., 2013, 93, 479.
- [31] V. Abrahamsson, I. Rodríguez-Meizoso, C. Turner, J Chromatogr A, 2012, 1250, 63
- [32] S. Tang, C. Qin, H. Wang, S. Li, S. Tian, J. Supercrit. Fluid, 2011, 57, 44.
- [33] D. Knorr, A. Froehling, H. Jaeger, K. Reineke, O. Schlueter, K. Schoessler, Annu. Rev. Food Sci. T., 2011, 2, 203.
- [34] L. Paniwnyk, E. Beaufoy, J. Lorimer, T. Mason. Ultrason. Sonochem., 2001, 8, 299.
- [35] Z. Hromadkova, A. Ebringerova, P. Valachovic, Ultrason. Sonochem., 2002, 9, 37.
- [36] S. Rodrigues, G. Pinto, J. Food Eng., 2007, 80, 869.
- [37] S. Chemat, A. Lagha, H. AitAmar, P. Bartels, F. Chemat, Flavour Fragr. J., 2004, 19, 188.
- [38] A. Goula, K. Thymiatis, K. Kaderides, Food Bioprod. Process., 2016, 100, 132.
- [39] C. Chen, L. You, A. Abbasi, X. Fu, R. Liu, Carbohyd. Polym, 2015, 130, 122.
- [40] C. de Oliveira, D. Giordani, R. Lutckemier, P. Gurak, F. Cladera-Olivera, L. Marczak, LWT- Food Sci. Technol., 2016, 71, 110.
- [41] S. Rodrigues, F. Fernandes, E. de Brito, A. Sousa, N. Narain, Ind. Crop Prod., 2015, 69, 400.
- [42] D. Zhang, Y. Wan, J. Xu, G. Wu, L. Li, Z. Yao, Carbohyd. Polym., 2016, 137, 473.
- [43] S. Toepfl, A. Mathys, V. Heinz, D. Knorr, Food Rev. Int., 2006, 22, 405.
- [44] U. Zimmermann G. Pilwat F. Riemann, Biophys. J., 1974, 14, 881.
- [45] R. Soliva-Fortuny, A. Balasa, D. Knorr, O. Martin-Belloso, Trends Food Sci. Tech., 2009, 20, 544.
- [46] E. Vorobiev, N. Lebovka, Food Eng. Rev., 2010, 2, 95.
- [47] M. Zbinden, B. Sturm, R. Nord, W. Carey, D. Moore, H. Shinogle, S. Stagg-Williams, Biotechnol. Bioeng., 2013, 110, 1605.
- [48] F. Barba, C. Galanakis, M. Esteve, A. Frigola, E. Vorobiev, J. Food Eng., 2015, 167, 38.
- [49] W. Zhao, Z. Yu, J. Liu, Y. Yu, Y. Yin, S. Lin, F. Chen, J. Sci. Food Agr., 2011, 91, 220.
- [50] O. Parniakov, F. Barba, N. Grimi, N. Lebovka, E. Vorobiev, Food Res. Int., 2014, 65, 337.
- [51] N. López, E. Puértolas, S. Condón, J. Raso, I. Alvarez, J. Food Eng., 2009, 90, 60.
- [52] N. Grimi, I. Praporscic, N. Lebovka, E. Vorobiev, Sep. Purif. Technol., 2007, 58, 267.
- [53] A. Ricci, G. Parpinello, A. Versari, Beverages, 2018, 4, 18.
- [54] C. Yang, Food Chem., 2010, 122, 373.
- [55] M. Puri, D. Sharma, C. Barrow, Trends Biotechnol., 2012, 30, 37.
- [56] K. Talley, E. Alexov, Proteins, 2010, 78, 2699.
- [57] S. Nadar, R. Pawar, V. Rathod, Int. J. Biol. Macromol., 2017, 101, 931.
- [58] M. Peterson, R. Daniel, M. Danson, R. Eisenthal, Biochem. J., 2007, 402, 331.
- [59] J. Londoño-Londoño, V. de Lima, O. Lara, A. Gil, T. Pasa, G. Arango, J. Pineda, Food Chem., 2010, 119, 81.
- [60] M. Capobiango, D. Lopes, R. Carreira, W. de Oliveira Afonso, S. Segall, M. Silvestre, Int. J. Food Eng., 2007, 3, 6.
- [61] W. Lee, G. Ahn, W. Wijesinghe, X. Yang, C. Ko, M. Kang, Y. Jeon, Algae, 2011, 26, 343.
- [62] H. Dominguez, M. Nunez, J. Lema, Food Chem., 1994, 49, 271.
- [63] S. Choudhari, L. Ananthanarayan, L. Food Chem., 2007, 102, 77.
- [64] T. Miron, M. Herrero, E. Ibáflez, J. Chromatogr. A, 2013 ,1288, 1.
- [65] S. Kim, S. Lim, J. Cereal. Sci., 2016, 68, 116.
- [66] H. Wu, J. Zhu, W. Diao, C. Wang, Carbohyd. Polym., 2014, 113, 31.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d60068d-6532-4548-836f-38d2dfb18619