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The frequency analysis of real resistors in relative values  
 

Abstract 

 
Three-element impedance including the resistance R as the main parameter 

and the residual parameters: serial inductance L and a parallel capacitance 

C is used as an equivalent circuit of resistor. It is the basic model of 
resistor for AC current. The real component of this impedance is not equal 

to the resistance R for the DC current, and there is the imaginary 

component. Both components depend on the frequency. Variants of the 
model with four different connections are also analyzed. Patterns of the 

relative resistor frequency errors in the generalized form, i.e. as a function 

of the relative values of resistance and frequency of the circuit are 
determined and their curves are given. Considerations are illustrated by 

few numerical examples.  
 
Keywords: resistor, AC models, equivalent circuits, impedance, 
characteristic parameters, frequency errors. 

 

1. Introduction 
 

The flow of electrical current in the real objects is described by 

the electromagnetic field equations as functions of space and time. 

If current is direct in time (DC) the ratio of voltage and current of 

any two-terminal object is determinated as its resistance R. If 

geometric sizes of real physical object are much smaller than the 

shortest wavelength of AC current waveform, then the simpler 

description by theory of the electrical circuits containing ideal 

dimensionless elements can be used. In models of AC circuits of 

the such low frequency f beside the ideal resistance R, the ideal 

reactive elements: capacitance C, inductance L, mutual inductance 

M and also an ideal stationary or controlled sources of voltage E 

and current I are applied. If for the permissible ranges of voltages 

and currents the values of these parameters are constant, then 

modeled circuit is linear. The method of analysis frequency 

characteristics of the practical two-terminal element with constant 

parameters, described in relative values is presented and analyzed 

below on the example of resistors used in measurements and 

electronics as metal foil and bulk resistors [1], [9]. 

For the alternating current (AC) of frequency f, the complex 

impedance describes any passive two-terminal device  

 

 jjImRej eZZZ)(Z   

 

with both rectangular or polar components as functions of 

pulsation  =2 f. Impedance Z 1 in the circuit equivalent schemes 

is presented as ideal resistance ZReRs   and ideal reactance 

ZXs  Imjj   connected in series. For very high frequencies, in 

which wavelengths of AC current and geometrical sizes of the real 

object are comparable, description with distributed parameters and 

the wave impedance Z as for transmission lines, have to be used. 

As the simple example of the two-terminal object in AC circuits 

is the real resistor. In addition to the its basic parameter R the 

impact of the residual parameters, the inductance L and 

capacitance C, called also as parasitic parameters, must be taken 

into account. These parameters are distributed in a volume of 

analyzed device and depend on its structure, shape and sizes. An 

impedance Z on the terminals depends on combination of all R L 

C values of its equivalent scheme.  

                                                      
1
 For simplicity in the following text as frequency are called both f and pulsation 

=2πf also known as the circular frequency. Often in text a parameter dependence on 

the frequency is not marked as is written shorter, e.g. Z instead of Z(j), Rs instead of 

Rs(), etc. 

 

Properties of real resistors used in AC circuits usually are 

described by equivalent schemes with values of R L C parameters 

independent on frequency ω. The basic there-element model has 

the structure given in Figure 1a. In the following text it is referred 

as model type  (gamma). The similar model, but with a different 

values of parameters can be used also for coils without  

a ferromagnetic core. The equivalent to the three-element model 

type  are two-element models (Fig. 1b) as serial Rs Ls and 

parallel Rr Cr circuits. In the general case their parameters depend 

on the frequency ω. The serial model is preferred for Im(Z) > 0 as 

then Ls > 0. If Im(Z) < 0 then Cr > 0 and resistor is modeled more 

simply by the parallel circuit of admittance Y(jω) = 1/Rr + jωCr [3]. 

 

a) b)  

 

Fig. 1.  The basic models of a real two terminal objects: a) type  of three constant 

elements R L C, b) its two-parameter equivalents: serial Rs Ls or parallel Rr Cr 

with both parameters dependent on frequency ω 

 

 

2. Assumptions 
 

The real resistor can fulfill properly the function of an ideal 

single resistance R in AC circuits only when Rs() = R and 

Xs() = 0. If not, then the difference R = Rs  R is the resistive 

component of its frequency error, and Xs is the reactive component 

of this error. A resistor, for which R  0 and Xs  0 may be called 

as good resistor. 

In considerations below it is assumed that: 

• the fixed values of R L C and Z parameters can be used 

throughout the full range of permissible values of currents and 

voltages. This applies to such electrical devices which structures 

do not include the non-linear ferromagnetic and dielectrics 

materials and semiconductor junctions.  

•  Resistor is treated as a individual element, i.e. it is not directly 

or electromagnetically coupled to other components of the 

circuit,  

•  L and C parameters of the resistor do not depend directly on the 

value of R, but only on its geometry including connections, 

•  R L C parameters also do not depend on the frequency, i.e. in 

thin film resistors and resistors made of materials with high 

resistivity the skin effect is negligible.  

Numerical examples and resulting conclusions are mainly given 

for a resistors of flat thin film plotted on the insulating substrate. 

At a given geometrical shape and sizes, their resistance R depends 

only on the thickness of the conductive layer. Parameters L, C of 

such resistors with identical shape and size, including the leads, 

are the same for the various R. This condition does not meet the 

resistors with a complex form of resistance track as meander or 

helix and wire wounded ones. 
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3. The relative values or numbers of 
similarities 

 

The analysis of frequency properties of the equivalent schemes 

of real objects can be more general if all their terminal parameters 

are expressed in relative values. In particular of two-terminal 

object shown in Fig. 1a, their impedance Z and its components Rs, 

Xs, can be functions of its resistance R for DC current or functions 

of the non damped vibration frequency ω0 and of the characteristic 

resistance R0 of this circuit [2]: 

 

CL

1
0  ,              (1) 

 

C/LR 0 .              (2) 

 

It is seen that ω0 and R0 are linked themselves by L and C. The 

frequency ω0 is when R 0. And the value of resistance R0 results 

from the equality of capacitive and inductive time constants 

τC = R0C and τL = L/R0, respectively.  

The frequency f0 = 0/2 inversely depends to a geometric sizes 

of resistor, e.g. for flat resistors of the centimeter sizes f0 is of the 

GHz order, and for micrometer sizes - of the THz order. If the 

resistor is made of materials with the magnetic and dielectric 

relative permeability equal to 1 and is located in the environment 

of such both permeabilities, then the characteristic resistance R0 is 

very close to the wave resistance of vacuum, approx. 377 . In the 

presence of materials with greater than vacuum permeabilities the 

value of R0 is reduced, usually to the range (50 -300)  - see the 

numerical example. 

Generalization of the impedance model description may be 

achieved by the use of so-called similarity numbers. These 

dimensionless parameters include, for example ratios of two 

quantities of the same dimensions. They are also referred often as 

the relative values. In describing the frequency characteristics of 

resistors the similarity numbers given below are used:  

-  Relative frequency  as ratio of the considered frequency f and 

the characteristic ones f0 of the model:  

 

00

def
// ff  ,    (3) 

 

where: 0   and 0ff  . 

-  relative resistance  as the ratio of resistance R for DC current 

and characteristic resistance R0: 

 

0

def
/RR    and hence   0RR  .                  (4) 

 

Similarity numbers of the impedance components related to R of 

the serial circuit model shown in Figure 1b, i.e.: 

-  relative serial resistance:  

 

R

R
r sdef

s     and from it   RrR ss  ,             (5) 

 

-  relative serial reactance:  

 

 RXx /s

def

s  ,   and from it   RxX ss                  (6) 

 

Figure 2 shows on the Gaussian plane the vector diagram of 

impedance Z components of the serial model of Figure 1b and 

components ΔR and jXs of an vector error ΔZ of the resistor. 

Directions of arrowheads indicate the signs of components. 

 

 

R R

Z

Z

0 ReR s

jIm jXs

 
 

Fig. 2.  Graph vector of serial impedance components of the resistor 

 

From this graph, you can also determine the relationship between 

the relative errors frequency resources R, X, Z resistor and 

components Rs, Xs its impedance Z, i.e.: 

-  relative resistance error: 

 

1
Re

S
Sdef







 r
R

RR

R

RZ
R               (7) 

 

-  relative reactance error: 

 

S
Sdef Im

x
R

X

R

Z
X        (8) 

 

-  relative impedance error: 

 

22def
/ XRRZZ             (9) 

 

 

4. Frequency properties of resistor model  
 

The Laplace operator impedance Z(s) of the model of Figure 1a 

can be described by following patterns: 
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The impedance Z(s) formulas (10) are products of two transfer 

functions: the non-ideal first order differentiator (in nominator) 

with time constant τL = L/R and the second order inertia element 

with transfer function reciprocal to the denominator of (10). For 

R < 2R0 (i.e. ρ < 2) second one is a attenuated oscillating element 

of the damping coefficient ζ = R/2R0. Then for R ≥ 2R0 its 

characteristic equation has two real roots: 
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and transfer function is the product of two first degree members. 

From (10), if sjω the following complex impedance Z(j) is 

obtained  

 

)(j

2
)()(j)(

j)1(

/j1
)j( 




 eZXR

CRCL

RL
RZ ss 




 , (11) 

 

where: Z - magnitude of impedance Z, φ - the phase angle of Z.  

Magnitude of impedance 
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)()1(
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
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The phase angle  

 




 arctgarctg 
s

s

R

L
,           (13) 

 

Where: time constant 

 

C
2
0

2
L

)1(/   ss RL .           (14) 

 

The time constant τ can be positive or negative, depending on 

whether the predominant is its component with L or C. For 

12
0

2   

 

  RCRL  CL  .      (14a) 

 

For relative values of frequency LC  0/  and related to 

R0 the relative resistance LCRRR  0/ , from (10) it follows 

 

 





j1

/j1
j

2 


 RZ .     (15) 

 

Then after elementary transformations, the relative impedance 

z(jη) ≡ Z(jη)/R and its rectangular components rs xs are [2]: 

 

ss xrz j
j1

/j1
)j(

2

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
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Functions of rs(η) and xs(η) for three values of the relative 

resistance  are given in Figure 3.  

 

 

a)  

      

b)  
 

Fig. 3.  Serial relative components of equations (17a,b) as function of relative 

frequency  for three values of  =R/R0: a) -relative resistance rs,  

b) -relative reactance xs 

 

As noticed before, the resistor is considered to be good if rs  1 

and xs  0. Figure 3 shows that this can occur only for not too high 

relative frequency, i.e.  < 0.2 and when the relative resistance 

  1. For example if  = 0.1 and  = 1 from equations (17a,b) is 

rs = 1 and xs = 0.0001. 

Resistor of  = 1, i.e. of the resistance R = R0, is proposed to call 

as compensated. 

The relative frequency errors of the circuit model of Figure 1a 

are resulting from definitions (7), (8) and described by patterns:  

 

 
  422

422

21

2
1









 srR ;   sxX  . (18a,b) 

 

For  4<< 1 i  4 4<< 1 simplified formulas can be used [3], i.e.:  

 

)2( 22  R , Zx CL    )()( 1
s ,  (19) 

 

where: τL=L/R, τC=RC, η2=ω2LC=ω2 τL τC, ρ
2
=R

2 
(τC/τL)=C/L.  

Further considerations concern on the scope of relatively low 

frequency, i.e.  < 0.1. Formulas (18a,b) of frequency error plots 

to  in the range 0.1 = 0.001 ... 0.1 and several values  are given 

in Figure 4 [2]. For the frequency range  = 0.001 ... 0.01 and 

relative resistance  = 0.1 ... 1 the resistance error δR (Fig. 4a) is 

very near to zero. When  = 0.1 the error δR is achieved 

approx. 2% for  = 0.1; +1%, for  =1;–2% for  =2; –20% for 

 = 5 and–50% for  = 10. 
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Fig. 4.  Frequency errors of the resistor model  as function of relative frequency  

for several resistance values relative : a) relative resistive error R,  

b) relative reactance error X 

 

From the Figure 4a, for a given value of  the upper limit of 

frequency gr can be estimated. It is the relative frequency, at 

which the relative error R does not exceed the permissible value. 

For example, if relative resistance  =10 (i.e. the resistance R is 

10R0) and the limited error is 5%, then the upper relative 

frequency gr is approx. 0.023 – see point with the blue circular 

outline in Figure 4a.  

Graphs in Figure 4b also allows you by the same way to assess 

the upper frequency gx for which the reactance error X does not 

exceed its limited value. So for the permissible value 5% of the 

X error, the upper relative frequency amounts to approx. 0.005 

for  = 0.1 (point with a blue border), and for  = 10 (point with  

a red border). For intermediate values of  between 0.1 and 10  
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a relative frequency limits are higher. These graphs also show that 

for xs = 0, a good approximation can be taken by equation(14a) 

rule that resistors with a resistance R smaller than the 

characteristic resistance R0 (i. e.  < 1) are inductive type 

(X > 0), and at the resistance R greater from R0 ( >1) - 

capacitive type (X < 0). This can be exactly recognized from 

pattern (14) for τ = 0 and was specified in [2]. 

Figures 4a and 4b also show that the requirement of upper 

frequency due to the permissible reactance error is higher than the 

for the maximum value of resistive error. Therefore, to apply in 

practice as a more convenient the relative impedance Z is 

proposed – see the formula (9). This error is only slightly larger 

than the larger of errors R or X. Charts of Z error in double 

logarithmic scale are given in Figure 5 [2]. 
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Fig. 5.  Dependence of the relative impedance error δZ of resistor on the relative 

frequency η for several relative resistance values  

 

 

5. Assessment of residual parameters 
 

A significant influence on the frequency characteristic of the 

resistor has also geometry of its connection with other elements of 

the electric circuit. It is assumed that these connections are two 

conductors of the diameter d, with the negligible resistance 

arranged parallely, as shown in Figure 6.  

 

 

RezystorPrzyłącze
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b

M

N

A

B
 

 

Fig. 6.  Resistor with connections 

 

The length of the connection is a, and the distance between axes 

of wires is b.  

Inductance Lp and the capacity Cp of connections can be 

evaluated with the approximate formulas for a symmetric line 

of two diameter d wires of a length a and the interval between the 

wire’s centers b. The appropriate formulas, reprinted from [4], are 

given in [2]. These formulas are valid for b and d >>a >>b. When 

the second condition is not fulfilled the obtained values Lp and Cp 

are undercounting, because they do not take into account the 

increase in inductance and capacitance dependent on the shape of 

the magnetic and electric field on the ends of the connection line. 

This increase takes into account by entering the additional 

coefficient  > 1 and then is obtained: 

 

1
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




d
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d

b
aL 


 .    (20) 

 

We assume here that the connection is in the environment of 

magnetic and dielectric permeabilities of vacuum. 

 

5.1. Example of calculation 
 

Let us calculate parameters Lp and Cp of the connection with 

sizes of a=b=10 mm and d=1.0mm. Assuming for this so short 

line the relatively large  1.5 after [4], [5], obtained is: 

Lp  0.018 H and Cp  0.14 pF. If the values of L and C of the 

model  of real resistor mainly depend on the inductance Lp and 

capacitance Cp of this connection, then from relation (1) the 

frequency f0  3.2 GHz and from (2) – the resistance R0  360  

are obtained. 

From formulas (12) it is clear that the m-time change of the 

geometric size of the connection give the m-time increase of the 

inductance and capacitance values. Thus, from the equation (1), 

that will be the m-fold decrease in frequency of ω0. E.g. if leads 

sizes are a = b = 100 mm and d = 10 mm then the two terminal 

circuit would have a natural frequency f0  20 MHz. For 

connections with sizes of a = b= 1.0 mm and d = 0.10 mm if 

f0  32 GHz. This qualitatively explains why electronic systems 

due to the miniaturization of sizes achieved the higher operating 

frequencies. Additionally, from formula (2) it is seen that m-fold 

change of the resistor sizes does not changes the characteristic 

resistance R0. 

 

6. Other models of resistor with connections 
 

The two wire connection of resistor (Fig. 7) has an inductance 

Lp and the capacitance Cp and can be considered as a lossless long 

line. If the frequency is so small that the electromagnetic wave 

length is far greater than the length of a connection, this can be 

modeled by two-port type  or type  [2] as shown in Figure 7. 

 

 

/2 /2a) b)Lp Lp Lp

/2Cp/2Cp Cp

   
 

Fig. 7.  Models of connections: a) type , b) type  

 

Connection of leads models type  or  given in Figure 7 and 

model  of resistor from Figure 1a with residual parameters Lr, Cr 

gives models with 5-five parameters Lp, Cp, Lr, Cr, R. Separate 

determination the values of Lp, Lr and Cp, Cr is very difficult in 

practice, and such models would not convenient to use. Four 

simpler models given in Figure 8 with the resultant parameters L, 

C as sums rprp ; CCCLLL  are therefore applied. We 

shall show that for the relative frequency  < 0.1, these models are 

roughly equivalent each other. 
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Fig. 8.  The equivalent 3-parameter circuits as models of the resistor with connection 

leads: a) the type  (gamma as in Fig. 1a); b)  type, c)  type, d)  type 

(reversed gamma) 

 

Frequency characteristics of the relative resistance rs() and the 

relative reactance xs() of two terminal models of Figure 8 differ 

from each other, but significant differences exist only for higher 

values of the relative frequency approaching  =1. 

The relative values of resistance rs and reactance xs of type  

model are represented by the formulas (17a,b). For a model  

these formulas are different [2]: 

 

connection
s 

 

R 
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To obtain the similar formulas for  and  models is quite 

cumbersome. More easy is find the pattern of relative complex 

impedance z = Z /R and by the application of appropriate 

mathematical formulas from z numerically calculate rs = Re z and 

xs = Im z. For relative frequencies  < 0.1, and the relative 

resistances of 0.1 <  < 10 models  and  have very similar 

values of impedance error Z. They are slightly larger than for the 

models  and  - see Figures 9 and 10 [2]. 
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Fig. 9.  The impedance error Z of the resistor models  and  dependence on   

and  
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Fig. 10.  The impedance error Z of the resistor models  and  dependence on  

and on  

 

The small differences in the impedance error Z between 

different models for the relative resistance value  around 1 is 

demonstrated by drawings in Figure 11.  
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Fig. 11.  The impedance error δZ of the resistor dependence on the relative 

resistance ρ (around ρ =1) for models shown in Figure 8:  

a) r = 0.95 … 1.05, b) r = 0.99 … 1.01 

 

Such small differences of Z however, have no significance in 

practice. It is rather a theoretical curiosity. Possible to keep the  

=R/R0, even to the extent of ±1% is very difficult or impossible, 

since the value R0 depends on changes of L and C of the resistor 

with connection and leakages. 

There is no possibility of deciding in practice which model of 

Figure 8 is the most appropriate in particular situation. This leads 

to choice the model of the simplest formulas to calculations. For 

the estimation of the limited values of the frequency error Z of 

the resistor impedance, the model  seems to be the most 

convenient. The formula for this model has simple form: 

 

 
  

22

22142

1

1













,Z .     (22)  

 

The possibility of correction the frequency characteristics of 

resistors used in practice are discussed in the part 2 of work [2]. 

The correction of the residual reactance Xr > 0 by small C can be 

only successfully implemented, e.g. for standard resistors or 

resistance sensors used in AC circuits. 

 

7. Accuracy of resistor in frequency band 
 

The foregoing considerations, including the drawings 3 - 5 show 

that for the relative frequency  < 0.1 (i.e. at a frequency f to 

approx. 0.1 of f0), the equivalent resistance Rs of the real resistor 

(Fig. 1b) is equal to the resistance value R for direct current. If the 

relative resistance  ≈ 1, i.e. when the resistor is compensated, in  

a wide frequency band is Rs ≈ R = R0.  
Dependence of resistance R0 characteristic on resultant residual 

parameters - the capacity C and the inductance L on the ends of 

the resistor together with connections are defined by the formula 

(1). Even if the values of L and C resulting from the construction 

of resistor are constant, other may be parameters of connection in 

each of the system. Furthermore, the L, C and R0 values are known 

with the low accuracy. Only the value R can be measured 

accurately. 

Specific values of L and C can be taken as the nominal 

inductance and the nominal capacity of the resistor. Calculated 

according to the formula (1) of the value of the frequency ω0 - is 

the nominal own frequency of the resistor. Resistor with resistance 

R = R0 defined by the formula (2) is the nominally compensated 

resistor. To describe changes of parameters of the model of 

resistor with a connection the concept of multiplier  as a number 

greater than 1 ( > 1) is proposed. To describe changes of 

parameters of the model of resistor with a connection, the concept 

of multiplier  > 1 can be introduced. The values of C and L then 

will be in ranges: 

- capacity: between the bottom value of Cd -fold less than the 

nominal value C, up to a upper value Cg -fold greater than C; 

- inductance: between the lower value Ld  times less than the 

nominal value L up to a upper value Lg which is  L. It is 

described as follows: 

 

1if  





;LL;
L

L;CC;
C

C gdgd .  (23) 

 

Table 1 summarizes the four cases when the capacitance and 

inductance take the extreme (lower or upper) values.  

In cases given in the Table 1, values of relative frequency and 

relative resistance should be rescaled respectively as given 

below.  
 

 

 

 

 



Measurement Automation Monitoring, Mar. 2016, no. 03, vol. 62, ISSN 2450-2855    85 
 

Tab. 1. Relative frequency and relative resistance in the four situations of extreme 

values of inductance and capacitance 

 

Case Relative frequency Relative resistance  

I. Cd, Ld 



  ddI LC   

d

d
I

L

C
R

 

II. Cd, Lg   gdII LC  



 

g

d
II

L

C
R

 

III. Cg, Ld   dgIII LC   
d

g
III

L

C
R  

IV. Cg, Lg   ggIV LC   
g

g
IV

L

C
R  

 

 

-  Case I: Relative frequency ηI decreases -fold, and the relative 

resistance ρI remains unchanged. Frequency characteristics 

shown in Figures 3 – 5 require only sharing relative frequency 

by. In a logarithmic scale on the abscissa, it means the shift of 

graphs by log to the left. 

-  Case II: frequency relative ηII does not change, and the 

resistance decreases relative ρII  times. That mean that 

characteristics run for the  times smaller values of resistance . 
-  Case III: Relative frequency ηIII remains unchanged, and the 

relative resistance ρIII growing  times. This means that the 

frequency response must be calculated for  times larger values 

of resistance . 

-  Case IV: The relative frequency ηIV increases -fold and the 

relative resistance  remains unchanged. This means that the 

frequency characteristics shown in Fig. 3 - 5 require multiplying 

the relative frequency  by . In a logarithmic scale on the 

abscissa, this corresponds to a shift of plots to right on log. 

Measures of the resistance R inaccuracy for alternating current 

are its relative frequency errors, i.e. an resistance error R - 

formulas (5) and (22), the reactance error X - formulas (6) and 

(22) and the impedance error Z - patterns (7) and (22). 

In cases II and III the frequency axis rescaling is not required. 

As the result of derogations of capacitance C and inductance L 

from their nominal values is the inaccuracy of resistance R, which 

depends on changes of the relative resistance  value. According 

to Table 1, the resistance  of the nominally compensated resistor 

can take the extreme values of 1/ and . Figure 12 shows the 

changes of the impedance error Z of resistor as function of 

relative frequency  for four values of multiplier . 

 

 

0,01 0,1
0,0001

0,001

0,01

0,1

1

10

0,001

Z

%
 = 1,05

 = 1,25

 = 1

 = 1,01

 = 
 =1/


II

III

 = 
 =1/


II

III

 = 
 =1/


II

III

 = 1

 
 

Fig. 12.  The impedance error Z of nominally compensated resistor ( =1) as 

function of the relative frequency  for four values of multiplier   

 

 

When changing  from 0.001 to 0.1 then error Z varies in four 

given below ranges.  

- From approx.110-4% to approx. 1% at  = 1. That is the 

perfectly compensated real resistor; 

-  From approx. 210-3% to approx. 1% at  = 1.01. That is 

resistor of L and C deviations from their nominal values within 

the range from 1% to 1%; 

-  From approx. 0.01% to approx. 1.4% at  = 1.05. That is resistor 

of deviations of L and C are in the range of approx. 4.8% to 5%,  
-  From approx. 0.045% to approx. 4.5% at  = 1.25, that is 

resistor of L and C the deviations in the range of 20% to 25%. 

From these considerations is resulted that the best accuracy of 

the pure resistance R at higher frequencies has the compensated 

resistor, i.e. satisfying the relationship (16). However, even  

a small deviation determined by multiplier  causes  

a considerable error. For example, for  = 1.05, i.e. for deviations 

of the capacity C and the inductance L from their nominal values 

of approx. 5% the impedance error Z increases from approx. 

0.0001% to approx. 0.01% with relative frequency  = 0.001, and 

from approx. 1% to approx. 1.4% at  = 0.1. Maintaining the C 

and L values in the range of 5% is not easy in practice. More 

realistic is the range of 20% to +25% ( = 1.25). Then the 

impedance error Z may be in the range from 0.05% for  = 0.001 

up to ~ 5% for  = 0.1. 

Anticipating the distribution p(Z) in a given range of the 

relative frequency , the uncertainty component B-type of the 

resistor with connection can be also estimated. Randomness is 

mainly coming from random changes of parasitic parameters C 

and L, and frequency. 

 

8. Summary 
 

In this work, the generalized description of the frequency 

characteristics of resistors not encountered in the literature is 

presented. These characteristics are expressed in numbers of 

similarity that is in relative terms, which is not meet in literature. 

Such description can be used for the frequency analysis of the 

equivalent schemes of different electrical devices. As examples 

from measurement instrumentation are resistors, including 

wounded [3] and performed by different technologies [1], [6], [9], 

and also models of other passive objects of the dominant 

parameter L or C etc. 

Results include as a special case the frequency characteristics of 

real resistors currently manufactured [1], [9]. 

Generalized description in relative terms can be applied also for 

standard platinum temperature sensors (Eng. acronym SPRT)  

in the analysis of the accuracy of temperature measurements 

between control points with application of the highest precision 

AC bridges [7]. 

If the model  is used for impedances at higher frequencies, an 

additional parallel R C branch extends it. Analysis and application 

of such model in the impedance spectrometry was presented at the 

last IMEKO 2015 Congress in Prague [8]. 
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