Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Shell-and-tube heat exchangers are widely used in chemical and process engineering. Assessing hydrodynamics of fluid flow in their shell-side is a highly complex task. This results from the complex geometry of the shell-side itself, defined by such parameters as the tubesheet layout, tube diameter, baffle spacing or baffle cut. Shell-and-tube heat exchangers are the subject of many studies in which design and flow parameters are analysed. However, only a few studies concentrate on issues strictly related to the identification of streams of the liquid flowing in the shell-side of apparatus on an industrial scale. In this article, the authors present the results of an experimental visualization study, utilizing Particle Image Velocimetry (PIV). The experiment used a laser sheet technique along and across a tube bundle. The main results of the measurements and analyses concentrate on identifying the flow pattern of streams in the shell-side and assessing stagnation vortices and their consequences. Finally, detecting bypass streams and leakage streams flowing through design gaps between the shell and the tube bundle as well as between the baffles and the tubes in the bundle are presented.
Czasopismo
Rocznik
Tom
Strony
245--256
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Environmental Engineering, Opole University of Technology, Opole, Poland
autor
- Kelvion Sp. z o. o. Opole, Poland
autor
- Faculty of Mechanical Engineering, Department of Vehicles, Opole University of Technology, Opole, Poland
Bibliografia
- 1. TEMA (2007). Standards of the Tubular Exchanger Manufacturer Association, 9th Edition, New York,
- 2. Jozaei A.F., Baheri A., Hafshejani M.K., Arad A. (2012). Optimization of baffle spacing on heat transfer, pressure drop and estimated price in a shell-and-tube exchanger, World Applied Sciences Journal, Vol. 18 (12),
- 3. Karaś M., Zając D., Ulbrich R. (2013). Distribution of heat exchange coefficient and vertical two-phase cross flow structures examination over tube bundles, using DPIV and electrochemical methods, Inż . Ap. Chem., 2013, 52, 5, 431-432.
- 4. Karaś M., Zając D., Ulbrich R. (2014). Experimental investigation of heat transfer performance coefficient tube bundle of shell and tube heat exchanger in two phase flow, Archives of thermodynamics, Vol. 35, No. 1, 87-98, 2014.
- 5. Guziałowska J., Ligus G., Ulbrich R. (2008). Some problems of flow pattern recognition in complex geometry, Proceedings of 5th International Conference on Transport phenomena in Multiphase Systems, Bialystok, Poland.
- 6. Chang T.H., Lee Ch., Lee H., Lee K.S. (2015). Velocity profiles between two baffles in a shell and tube heat exchanger, Journal of Thermal Science, Vol. 24, No. 4 (2015) 356-363.
- 7. Adrian R.J, Westerweel J. (2011). Particle Image Velocimetry, Cambridge University Press, New York, USA.
- 8. Paul S.S., Tachie M.F., Ormiston S.J. (2007). Experimental study of turbulent cross-flow in a staggered tube bundle using particle image velocimetry, International Journal of Heat and Fluid Flow, Vol. 28, 441-453.
- 9. Bin Ch., Liejin G. (2000). Particle Image Velocimetry measurement of flow across tube bundle in waste heat boiler, Journal of Thermal Science, Vol. 9, No. 3, 249-256.
- 10. Velasco F.J.S., Lopez del Pra C, Herranz L.E. (2008). Expansion of a radial jet from a guillotine tube breach in a shell-and-tube heat exchanger, Experimental Thermal and Fluid Science, Vol. 32(4), 947-961.
- 11. Iwaki C., Cheong K.H., Monji H., Matsui G. (2004). PIV measurement of the vertical cross-flow structure over tube bundles, Experiments in Fluids, Vol. 37, 350-363.
- 12. Dominguez-Ontiveros E.E., Hassan Y.A. (2009). Nonintrusive experimental investigation of flow behavior inside a 5×5 rod bundle with spacer grids using PIV and MIR, Nuclear Engineering and Design, Vol. 239, 888-898.
- 13. Saunders E.A.D. (1983). Features relating to thermal design in Heat exchanger design handbook, Vol. 4, Hemisphere, Section 4.2.5, Washington, USA.
- 14. Xing L., Zhengpeng M., Sichao T., Ruiqi W., Xiaoyu W. (2018). PIV study of velocity distribution and turbulence statistics in a rod bundle, Annals of Nuclear Energy, Vol. 117 (7), 305-317,
- 15. Yang S., Chen Y., Wu J., Gu H. (2018). Influence of baffle configurations on flow and heat transfer characteristics of unilateral type helical baffle heat exchangers, Applied Thermal Engineering, Vol. 133, 739-748.
- 16. Le H., Kottke V. (1999). Analysis of local shellside heat and mass transfer in the shell-and-tube heat exchanger with disc-and-doughnut baffles, International Journal of Heat and Mass Transfer, vol. 42 (13), 3009-3521.
- 17. Wen J., Yang H., Wang S., Gu X. (2018). PIV experimental investigation on shell-side flow patterns of shell and tube heat exchanger with different helical baffles, International Journal of Heat and Mass Transfer, Vol. 104, 247-259.
- 18. Lee S., Delgado M., Lee Y., Hassan Y.A. (2018). Experimental investigation of the isothermal flow field across slant 5-tube bundles in helically coiled steam generator geometry using PIV, Nuclear Engineering and Design, Vol. 338, 261-268.
- 19. Delgado M., Lee S., Hassan Y.A., Anand N.K. (2018). Flow visualization study at the interface of alternating pitch tube bundles in a model helical coil steam generator using particle image velocimetry, International Journal of Heat and Mass Transfer, Vol. 122, 614-628.
- 20. Mourad Y., Fayolle F., Legrand J. (2011). Flow patterns analysis using experimental PIV technique inside scraped surface heat exchanger in continuous flow condition, Applied Thermal Engineering, Vol. 31, 2855-2868.
- 21. Bell K.J. (2004). Heat exchanger design for the process industries, Journal of Heat Transfer, vol. 126 (2004), pp. 877-885.
- 22. Saeedan M., Bahiraei M. (2015). Chemical engineering research and design effects of geometrical parameters on hydrothermal characteristics of shell-and-tube heat exchanger with helical baffles: Numerical investigation, modeling and optimization, Chemical Engineering Research and Design, Vol. 96, 43-53.
- 23. Nemati Taher F., Zeyninejad Movassag S., Razmi K., Tasouji Azar R. (2015). Baffle space impact on the performance of helical baffle shell and tube heat exchangers, Applied Thermal Engineering, vol. 44, 143-149.
- 24. Webb R.L, (1994). Principles of Enhanced Heat Transfer, Wiley, New York.
- 25. Mellal M., Benzeguir R., Sahel D., Ameur H., (2017). Hydro-thermal shell-side performance evaluation of a shell and tube heat exchanger under different baffle arrangement and orientation, International Journal of Thermal Sciences, Vol. 121, 138-149.
- 26. Sthlik P. Wadekar V.V. (2002). Different strategies to improve industrial heat exchanger, Heat Transfer Engineering, Vol. 23, 36-48.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d5f457e-5303-4509-8590-d2d7575370dc