PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of initial casting temperature on the properties and microstructure of ultra-light cement-based foam composites for energy-saving buildings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The application of ultra-light cement-based foam composites (ULCF) in buildings has been verified as an effective way to achieve energy conservation in the building sector. However, the production process of ULCF is difficult to complete at the ideal constant temperature during practical industrial production due to cost control and other factors. The sun exposure and residual heat from the machines will cause the initial casting temperature of ULCF to be raised in the preparation process, which will inevitably have an impact on the macroscopic properties of ULCF. In this study, a series of tests were conducted to explore the effect of initial casting temperature (30–55 °C) on the macroscopic properties and microstructure of ULCF for the first time. The results indicated that the 28-day compressive strength of ULCF exhibited a tendency to first increase and then decrease with the increase of initial casting temperature, which was attributed to the variation of its internal pore structure. The thermal conductivity test shows that the thermal conductivity of ULCF existed a minimum value of 0.0651 Wm−1 K−1 when the initial casting temperature reached 40 °C. Meanwhile, SEM and XRD were employed to examine the microstructure and hydration products of ULCF with different initial casting temperatures. Furthermore, the internal pore structure parameters of ULCF were quantitatively analyzed through Image-Pro Plus software, and the results demonstrated that there is a critical value for the initial casting temperature of ULCF, which allows the internal pore structure of ULCF to have characteristics of small size and approximate spherical shape.
Rocznik
Strony
art. no. e190, 2023
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
  • School of Civil Engineering and Architecture, Xi’an University of Technology, No. 5, Jinhua Road, Xi’an, Shaanxi 710048, China
autor
  • School of Civil Engineering and Architecture, Xi’an University of Technology, No. 5, Jinhua Road, Xi’an, Shaanxi 710048, China
autor
  • School of Civil Engineering and Architecture, Xi’an University of Technology, No. 5, Jinhua Road, Xi’an, Shaanxi 710048, China
autor
  • School of Civil Engineering and Architecture, Xi’an University of Technology, No. 5, Jinhua Road, Xi’an, Shaanxi 710048, China
autor
  • School of Civil Engineering and Architecture, Xi’an University of Technology, No. 5, Jinhua Road, Xi’an, Shaanxi 710048, China
autor
  • School of Civil Engineering and Architecture, Xi’an University of Technology, No. 5, Jinhua Road, Xi’an, Shaanxi 710048, China
autor
  • School of Civil Engineering and Architecture, Xi’an University of Technology, No. 5, Jinhua Road, Xi’an, Shaanxi 710048, China
Bibliografia
  • 1. Gencel O, Sarı A, Ustaoglu A, Hekimoglu G, Erdogmus E, Yaras A, et al. Eco-friendly building materials containing micronized expanded vermiculite and phase change material for solar based thermo-regulation applications. Constr Build Mater. 2021;308:125062. https://doi.org/10.1016/j.conbuildmat.2021. 125062.
  • 2. Proença M, Garrido M, Correia JR, Gomes MG. Fire resistance behaviour of GFRP-polyurethane composite sandwich panels for building floors. Compos B Eng. 2021;224:109171. https://doi.org/ 10.1016/j.compositesb.2021.109171.
  • 3. Rosas-Flores JA, Rosas-Flores D. Potential energy savings and mitigation of emissions by insulation for residential buildings in Mexico. Energy Build. 2020;209:109698. https://doi.org/10. 1016/j.enbuild.2019.109698.
  • 4. Yuan C, Wenhua Z, Lei Z, Wanting Z, Yunsheng Z. Dynamic impact compressive performance of expanded polystyrene (EPS)- foamed concrete. Arch Civ Mech Eng. 2022;22:164. https://doi. org/10.1007/s43452-022-00486-6.
  • 5. Li P, Wu H, Liu Y, Yang J, Fang Z, Lin B. Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Constr Build Mater. 2019;205:529–42. https://doi.org/10.1016/j. conbuildmat.2019.01.212.
  • 6. Falliano D, Parmigiani S, Suarez-Riera D, Ferro GA, Restuccia L. Stability, flexural behavior and compressive strength of ultra- lightweight fiber-reinforced foamed concrete with dry density lower than 100 kg/m 3 . J Build Eng. 2022;51:104329. https://doi. org/10.1016/j.jobe.2022.104329.
  • 7. Fan GZ, Ren X, Wang SL, Luo C, Xie YM. A novel cement-based auxetic foam composite: experimental study. Case Stud Constr Mater. 2022;17:e01159. https:// doi. org/ 10. 1016/j. cscm. 2022. e01159.
  • 8. Kovačič A, Novak N, Vesenjak M, Dubrovski PD, Ren Z. Geo- metrical and mechanical properties of polyamide PA 12 bonds in composite advanced pore morphology (APM) foam structures. Arch Civ Mech Eng. 2018;18:1198–206. https://doi.org/10.1016/j. acme.2018.01.004.
  • 9. Huang D-M, Liu K, Wang C-Q, Shen B-H, Zhao H, Huang Q-C, et al. Interfacial enhancement technology in high-volume fly ash foam concrete: microscopic mechanism and heavy metal safety assessment. Arch Civ Mech Eng. 2022;23(17):1. https://doi.org/ 10.1007/s43452-022-00555-w.
  • 10. Liu J, Zhuge Y, Ma X, Liu M, Liu Y, Wu X, et al. Physical and mechanical properties of expanded vermiculite (EV) embedded foam concrete subjected to elevated temperatures. Case Stud Constr Mater. 2022;16:e01038. https://doi.org/10.1016/j.cscm.2022. e01038.
  • 11. Zhang H, Zhang X, Qi X, Zhang S, Bi Y, Wu J, et al. Effect of ambient temperature on the properties and action mechanism of silt-based foamed concrete. Constr Build Mater. 2021;312:125379. https://doi.org/10.1016/j.conbuildmat.2021.125379.
  • 12. Othuman MA, Wang YC. Elevated-temperature thermal prop- erties of lightweight foamed concrete. Constr Build Mater. 2011;25:705–16. https://doi.org/10.1016/j.conbuildmat.2010.07. 016.
  • 13. Tan X, Chen W, Wang J, Yang D, Qi X, Ma Y, et al. Influence of high temperature on the residual physical and mechanical properties of foamed concrete. Constr Build Mater. 2017;135:203–11. https://doi.org/10.1016/j.conbuildmat.2016.12.223.
  • 14. Gencel O, Benli A, Bayraktar OY, Kaplan G, Sutcu M, Elabade WAT. Effect of waste marble powder and rice husk ash on the microstructural, physico-mechanical and transport properties of foam concretes exposed to high temperatures and freeze–thaw cycles. Constr Build Mater. 2021;291:123374. https://doi.org/10. 1016/j.conbuildmat.2021.123374.
  • 15. Liu P, Wu W, Du B, Hua Tian G, Gong YF. Study on the heat and moisture transfer characteristics of aerogel-enhanced foam concrete precast wall panels and the influence of building energy consumption. Energy Build. 2022;256:111707. https://doi.org/10. 1016/j.enbuild.2021.111707.
  • 16. Ping P, Li B, Jian C, He X, Wang D, Zhang J, et al. Effect of temperature on stability and film thinning behavior of aqueous film forming foam. J Mol Liq. 2022;370:120978. https://doi.org/ 10.1016/j.molliq.2022.120978.
  • 17. Xu Z, Li Z, Cui S, Li B, Zhang Q, Zheng L, et al. Assessing the performance of foams stabilized by anionic/nonionic surfactant mixture under high temperature and pressure conditions. Colloids Surf A. 2022;651:129699. https://doi.org/10.1016/j.colsu rfa.2022.129699.
  • 18. Wang J, Luo X, Rogers S, Li P, Feng Y. Stabilization of CO 2 aqueous foams at high temperature and high pressure: small- angle neutron scattering and rheological studies. Colloids Surf A. 2022;647:129015. https:// doi. org/ 10. 1016/j. colsu rfa. 2022. 129015.
  • 19. Bashir A, Haddad A, Rafati R. An experimental investigation of dynamic viscosity of foam at different temperatures. Chem Eng Sci. 2021;248:117262. https://doi.org/10.1016/j.ces.2021.117262.
  • 20. Xiao M, Li F, Yang P, Li B, Wei J, Yu Q. Influence of slurry char- acteristics on the bubble stability in foamed concrete. J Build Eng. 2023;71:106500. https://doi.org/10.1016/j.jobe.2023.106500.
  • 21. Zhang Y, Sang G, Du X, Cui X, Zhang L, Zhu Y, et al. Develop- ment of a novel alkali-activated slag-based composite containing paraffin/ceramsite shape stabilized phase change material for thermal energy storage. Constr Build Mater. 2021;304:124594. https://doi.org/10.1016/j.conbuildmat.2021.124594.
  • 22. Youjie S, Zhang S, Hu D, Ma L, Li Y. Investigation on ther- mal stability of highly stable fluorine-free foam co-stabilized by silica nanoparticles and multi-component surfactants. J Mol Liq. 2023;382:122039. https://doi.org/10.1016/j.molliq.2023.122039.
  • 23. He J, Liu G, Sang G, He J, Wu Y. Investigation on foam stability of multi-component composite foaming agent. SSRN Electron J. 2023. https://doi.org/10.2139/ssrn.4371129.
  • 24. Tran T, Gonzalez Perdomo ME, Haghighi M, Amrouch K. Study of the synergistic effects between different surfactant types and silica nanoparticles on the stability of liquid foams at elevated temperature. Fuel. 2022;315:122818. https://doi.org/10.1016/j. fuel.2021.122818.
  • 25. Rezaei A, Derikvand Z, Parsaei R, Imanivarnosfaderani M. Sur- factant-silica nanoparticle stabilized N 2 -foam flooding: a mechanistic study on the effect of surfactant type and temperature. J Mol Liq. 2021;325:115091. https://doi.org/10.1016/j.molliq.2020. 115091.
  • 26. Feng J, Yan Z, Song J, He J, Zhao G, Fan H. Study on the struc- ture-activity relationship between the molecular structure of sulfate gemini surfactant and surface activity, thermodynamic properties and foam properties. Chem Eng Sci. 2021;245:116857. https://doi.org/10.1016/j.ces.2021.116857.
  • 27. Snellings R, Machner A, Bolte G, Kamyab H, Durdzinski P, Teck P, et al. Hydration kinetics of ternary slag-limestone cements: impact of water to binder ratio and curing temperature. Cem Concr Res. 2022;151:106647. https://doi.org/10.1016/j.cemco nres.2021.106647.
  • 28. Pang X, Sun L, Sun F, Zhang G, Guo S, Bu Y. Cement hydration kinetics study in the temperature range from 15 °C to 95 °C. Cem Concr Res. 2021;148:106552. https://doi.org/10.1016/j.cemco nres.2021.106552.
  • 29. Yousuf F, Xiaosheng W. Early strength development and hydration of cement pastes at different temperatures or with superplasticiser characterised by electrical resistivity. Case Stud Constr Mater. 2022;16:e00911. https://doi.org/10.1016/j.cscm.2022.e00911.
  • 30. Pang X, Sun L, Chen M, Xian M, Cheng G, Liu Y, et al. Influence of curing temperature on the hydration and strength development of Class G Portland cement. Cem Concr Res. 2022;156:106776. https://doi.org/10.1016/j.cemconres.2022.106776.
  • 31. Wang Z, Li S, Peng D, Cheng H, Wei Y. The effect of inter- facial tension on CO 2 oil-based foam stability under different temperatures and pressures. Fuel. 2022. https://doi.org/10.2139/ ssrn.4313234.
  • 32. Sousa LC, Sousa H, Castro CF, António CC, Sousa R. A new lightweight masonry block: thermal and mechanical performance. Arch Civ Mech Eng. 2014;14:160–9. https://doi.org/10.1016/j. acme.2013.08.003.
  • 33. Yang Y, Zhou Q, Deng Y, Lin J. Reinforcement effects of multi- scale hybrid fiber on flexural and fracture behaviors of ultra-low- weight foamed cement-based composites. Cem Concr Compos. 2022;128:104422. https://doi.org/10.1016/j.cemconcomp.2022. 104422.
  • 34. Zhang X, Yang Q, Shi Y, Zheng G, Li Q, Chen H, et al. Effects of different control methods on the mechanical and thermal properties of ultra-light foamed concrete. Constr Build Mater. 2020;262:120082. https://doi.org/10.1016/j.conbuildmat.2020. 120082.
  • 35. Sang G, Zhu Y, Yang G, Zhang H. Preparation and characterization of high porosity cement-based foam material. Constr Build Mater. 2015;91:133–7. https:// doi. org/ 10. 1016/j. conbu ildmat. 2015.05.032.
  • 36. Cui H, Luo C, Sang G, Jin Y, Dong Z, Bao X, et al. Effect of carbon nanotubes on properties of alkali activated slag—a mechanistic study. J Clean Prod. 2019;245:119021. https://doi.org/10. 1016/j.jclepro.2019.119021.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d5dce28-e796-4c2d-b011-a8b1191f3560
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.