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ON THE STRUCTURE OF COMPACT GRAPHS
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Abstract. A simple graph G is called a compact graph if G contains no isolated vertices and
for each pair x, y of non-adjacent vertices of G, there is a vertex z with N(x) ∪N(y) ⊆ N(z),
where N(v) is the neighborhood of v, for every vertex v of G. In this paper, compact graphs
with sufficient number of edges are studied. Also, it is proved that every regular compact
graph is strongly regular. Some results about cycles in compact graphs are proved, too.
Among other results, it is proved that if the ascending chain condition holds for the set
of neighbors of a compact graph G, then the descending chain condition holds for the set of
neighbors of G.
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1. INTRODUCTION

Throughout this paper, a graph G is an undirected simple graph with the vertex set
V = V (G) and the edge set E = E(G). If vertices x and y are adjacent we write
x−y. By G, we mean the complement graph of G. Define the neighborhood NG(x) of
a vertex x to be the set of all vertices adjacent to x and let N(z) = N(z)∪ {z} denote
the closure of NG(z). When there is no risk of confusion, we denote NG(v) by N(v).
The degree of a vertex x is denoted by deg(x). Vertices with zero degree are called
isolated vertices. The graph G is said to be r-regular, if the degree of each vertex is r.
Also, G is called a refinement of a star graph if there exists a vertex adjacent to all
other vertices. The complete graph of order n is denoted by Kn. The girth of a graph
G, denoted by girth(G), is the length of a shortest cycle contained in G. If G does
not contain any cycle, its girth is defined to be infinity. The diameter of a connected
graph G, denoted by diam(G), is the maximum distance between any pair of the
vertices of G. We denote by Pn and Cn a path and a cycle of order n, respectively.
Every connected graph with no cycle is called a tree. For a subset U ⊆ V (G), the
subgraph of G induced by U , denoted G[U ], is the graph with V (G[U ]) = U and edge
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{u, v} ∈ E(G[U ]) if and only if {u, v} ∈ E(G). The join G1∨G2 of graphs G1, G2 is the
union of the two graphs with additional edges v1 − v2 for all v1 ∈ V (G1), v2 ∈ V (G2).
The complete n-partite graph is Kp1,p2,...,pn =

∨n
i=1Kpi . A complete 2-partite graph is

called complete bipartite. The graph K1,p is called a star graph, and the vertex adjacent
to p other vertices is the center of the star graph. For undefined terminologies the
reader is referred to [2] and [3].

As it was defined by Lu and Wu in [7], a graph G is called a compact graph if
G contains no isolated vertices and for each pair x, y of non-adjacent vertices of G,
there is a vertex z with N(x) ∪N(y) ⊆ N(z). It was proved in [7, Theorem 3.1] that
a simple graph G is the zero-divisor graph of a poset if and only if G is a compact
graph. Therefore, compact graphs play an important role in the study of zero-divisor
graphs of posets. To find some kinds of zero-divisor graphs we refer the reader to
[1, 5–7] and [8]. In this article, we continue the study of graph-theory properties of
compact graphs by determining when an arbitrary graph is a compact graph. We find
the lowest possible bound on the number of edges e(G) = |E(G)| in a graph G that
guarantees G is either compact or a refinement of a star graph. We prove a necessary
and sufficient condition for determining if a regular graph is a compact graph. Finally,
some results about the cycles in compact graphs are proved.

The following theorem from [7] reflects some properties of compact graphs and will
be used in this paper, frequently.

Theorem 1.1 ([7, Proposition 2.1]). Let G be a compact graph. Then for any pair of
distinct vertices x, y of G, either N(x) ∩N(y) 6= ∅ or each vertex in N(x) is adjacent
to all the vertices of N(y). In particular, G is connected with diameter at most 3.

2. HOW MANY EDGES COMPACT GRAPHS CAN HAVE?

It is straightforward to see that complete graphs Kn and complete graphs Kn with
p removed edges are always compact graphs if p is very small relative to n. In this
section, we show that all connected graphs with a sufficient number of edges are
compact. For this reason, we characterize compact graphs by the number of edges in
their complements.

We start with recalling the definition of compact graphs.

Definition 2.1 ([7]). A graph G is called a compact graph if G contains no isolated
vertices and for each pair x, y of non-adjacent vertices of G, there is a vertex z with
N(x) ∪N(y) ⊆ N(z).

Recall that a wheel graph Wn is a graph with n vertices (n ≥ 4), formed by
connecting a single vertex to all vertices of a Cn−1.

Example 2.2. From Theorem 1.1, we know that any compact graph G is connected
with diameter at most 3. If moreover, G contains a cycle then girth(G) ≤ 4. So,

(i) Pn is compact if and only if n ∈ {2, 3},
(ii) Cn is compact if and only if n ∈ {3, 4},
(iii) Wn is compact if and only if n ∈ {4, 5}.
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To prove the main result of this section (Theorem 2.6), the following lemma is
needed.

Lemma 2.3. Let {Gα}α∈Λ be a family of disjoint graphs. Then G =
∨
α∈ΛGα is

compact if and only if every Gα is compact.

Proof. First suppose that G is a compact graph and choose two nonadjacent vertices x
and y in Gα. Then it is clear that x and y are not adjacent in G and so there
exists a vertex z of G such that NG(x) ∪ NG(y) ⊆ NG(z). If z ∈ V (Gβ) with
β 6= α, then z ∈ NG(x) which is impossible. Thus we can assume that z ∈ V (Gα).
Since NG(a) = NGα(a) ∪ (

⋃
β 6=α V (Gβ)), for every a ∈ V (Gα), we deduce that

NGα(x) ∪ NGα(y) ⊆ NGα(z). Conversely, assume that every Gα is compact. If x, y
are two nonadjacent vertices of G =

∨
α∈ΛGα, then x, y ∈ V (Gα) and so there exists

a vertex z of Gα such that NGα(x) ∪NGα(y) ⊆ NGα(z). Hence

NG(x) ∪NG(y) = NGα(x) ∪NGα(y) ∪ (
⋃

β 6=α
V (Gβ))

⊆ NGα(z) ∪ (
⋃

β 6=α
V (Gβ)) = NG(z),

and this completes the proof.

Now, we have the following immediate corollaries.

Corollary 2.4. Let G be a connected graph which is not the refinement of a star
graph, and let H1, . . . ,Hm be the connected components of the complement graph G.
Then G is a compact graph if and only if each induced subgraph G[V (Hi)] is a compact
graph.

Corollary 2.5. Any complete k-partite graph is compact.

Clearly, the graphs P4, P5,K1,2 ∨ P4 and the graph G1 in Figure 1 are neither
compact nor refinement of star graphs.

u
x

z

y

v

Fig. 1. The plane of graph G1

In the following theorem, it is shown that every noncompact graph with a sufficient
number of edges is the join of one of the above graphs with some copies of K2. By
Kn,p, we mean the set of all connected graphs with n vertices and e(Kn)− p edges.
Note that a complete graph Kn has e(Kn) = n(n−1)

2 edges.
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Theorem 2.6. Let G ∈ Kn,p be a graph which is not a refinement of a star graph.
Then the following statements hold.
(1) If p ≤ n

2 + 1 and n is even, then G is compact if and only if

G � P4 ∨K2 ∨ · · · ∨K2︸ ︷︷ ︸
(n−4)

2 times

.

(2) If p ≤ dn2 e+ 1 and n is odd, then G is compact if and only if G is not isomorphic
to the following graphs:

G1 ∨K2 ∨ · · · ∨K2︸ ︷︷ ︸
(n−5)

2 times

,

K1,2 ∨ P4 ∨K2 ∨ · · · ∨K2︸ ︷︷ ︸
n−7

2 times

,

P5 ∨K2 ∨ · · · ∨K2︸ ︷︷ ︸
n−5

2 times

,

where G1 is the graph in Figure 1.
(3) For every integer p with dn2 e+ 1 < p ≤ (n−1)(n−2)

2 , there exists a graph in Kn,p
which is not compact.

Proof. Choose G ∈ Kn,p with p ≤ dn2 e + 1. If p ≤ bn−1
2 c, then we show that G has

a vertex which is adjacent to every other vertex of G. Suppose to the contrary, every
vertex of G has degree at most n− 2. Then we have e(G) = n(n−1)

2 − p ≤ n(n−2)
2 and

so p ≥ n
2 , a contradiction. Hence G is a refinement of a star graph and by hypothesis,

we can assume that bn−1
2 c < p ≤ dn2 e+ 1. Thus it is clear that for even n, p = n

2 ,
n
2 + 1

and for odd n, p = n+1
2 , n+3

2 . Now, we follow the proof in the following cases:
Case 1. n is even and p = n

2 . In order to G be not the refinement of a star graph,
every vertex of G must have degree n− 2, which implies that all of p edges in G must
be single component edges. So, in this case, Corollary 2.4 implies that G is a compact
graph.
Case 2. n is even and p = n

2 + 1. In this case, G has one of the degree sequence either
{n− 3, n− 3, n− 2, . . . , n− 2} or {n− 4, n− 2, . . . , n− 2}. If G has the second degree
sequence, then every connected component of G is either K1,2 or K2, and so G is
compact, by Corollary 2.4. Thus we can assume that G has the first degree sequence.
Choose u, v ∈ V (G) with deg(u) = deg(v) = n − 3. If u and v are adjacent, then
every connected component of G is either K1,2 or K2; therefore, G is compact, by
Corollary 2.4. On the other hand, if u and v are nonadjacent vertices, one of the
connected components of G is

P4 : x− u− v − y,
for some vertices x, y, and any other connected component of G is K2. Thus

G ∼= P4 ∨K2 ∨ · · · ∨K2︸ ︷︷ ︸
(n−4)

2 times

,

which is not compact, by Lemma 2.3.
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Case 3. n is odd and p = n+1
2 . In this case, G can only have degree sequence

{n− 3, , n− 2, . . . , n− 2}. Thus every connected component of G is either K1,2 or K2;
so G is compact.
Case 4. n is odd and p = n+3

2 . Then G has one of the degree sequences S1 =
{n − 5, n − 2, . . . , n − 2}, S2 = {n − 4, n − 3, n − 2, . . . , n − 2}, or S3 = {n − 3,
n− 3, n− 3, n− 2, . . . , n− 2}; so G has at least p− 6 single component edges. In case
that G has the degree sequence S1, every connected component of G must be either
K1,4 or K2, and so G is compact, by Corollary 2.4. Now, assume that one of S2 and
S3 is the degree sequence of G.
Subcase 1. LetG has the degree sequence S2 and choose u, v ∈ V (G) with deg(u) = n−4
and deg(v) = n− 3. If u ∈ N(v), then one of the connected components of G is the
noncompact graph H, pictured in Figure 2, for some vertices x, y, z ∈ V (G) and any
other connected component of G is K2.

x
v u y

z

Fig. 2. The plane of graph H

So,
G ∼= G1 ∨K2 ∨ · · · ∨K2︸ ︷︷ ︸

(n−5)
2 times

.

Now, assume that u ∈ N(v). Then every connected component of G is K1,3, K1,2 or
K2 and hence G is compact, again by Corollary 2.4.
Subcase 2. Let G has the degree sequence S3 and choose u, v, w ∈ V (G) with deg(u) =
deg(v) = deg(w) = n − 3. If G[{u, v, w}] = K3, then every connected component of
G is either K1,2 or K2; moreover, G[{u, v, w}] = K3 implies that every connected
component of G is either K3 or K2, and so G is compact. Otherwise, we can assume
that G[{u, v, w}] is either K1,2 or K2 ∪K1. If G[{u, v, w}] = K1,2, then two connected
components of G are K1,2 and P4 and all of the other components of G are single
edges. Thus

G ∼= K1,2 ∨ P4 ∨K2 ∨ · · · ∨K2︸ ︷︷ ︸
n−7

2 times

.

Finally, if G[{u, v, w}] = K1 ∪K2, then a similar argument shows that

G ∼= P5 ∨K2 ∨ · · · ∨K2︸ ︷︷ ︸
n−5

2 times

.

The proofs of (1) and (2) follow from Cases 1 and 2. Next, we prove (3). The assumption
dn2 e+ 1 < p ≤ (n−1)(n−2)

2 implies that n > 4. Let G be a graph with the vertex set
{v1, v2, . . . , vn} and n− 1 edges v1 − v3, v1 − v4, . . . , v1 − vn−1, v2 − v4, v2 − vn. Add



880 Reza Nikandish and Farzad Shaveisi

edges to G so that it has e(Kn)−max{n, p} edges, but the n edges v1− v2, v2− v3,. . . ,
vn−1 − vn, vn − v1 are not in G. If p < n, then also add in the edges v4+2j − v5+2j , for
0 ≤ j ≤ n−p. Then v1, v2 are nonadjacent and N(v1)∪N(v2) = {v3, v4, . . . , vn}. From
construction and for i = 1, 2, 3, we have vi−1, vi+1 /∈ N(vi), and for 3 < i < n, either
vi−1 /∈ N(vi) or vi+1 /∈ N(vi). Thus N(v1) ∪N(v2) * N(vi), for every 1 ≤ i ≤ n and
so, the constructed graph is not compact. Note that v4 ∈ N(v1) ∩N(v2). Therefore,
the path v1 − v4 − v2 connects v1 and v2. Since V (G) = N(v1) ∪N(v2), we deduce
that G is connected. Hence G ∈ Kn,p and the proof is complete.

Remark 2.7. We note that if G is a refinement of a star graph with n vertices, then
G is compact if and only if G ∼= Kr ∨H, for some positive integer r and some compact
graph H with n− r vertices. So, G is compact if and only if the graph obtained from
G after removing all vertices with degree n− 1 is compact.

3. DEGREES OF THE VERTICES IN COMPACT GRAPHS

The main aim of this section is to show that regular compact graphs are strongly
regular. First, we need the following lemma.

Lemma 3.1. Let G be a compact graph. Then every vertex of G has finite degree
if and only if G is a finite graph.

Proof. Suppose to the contrary, G is an infinite graph. Let x be a vertex of G. Then
by hypothesis, there exists an infinite subset {yi}i≥1 of V (G) such that x and yi are
not adjacent in G, for every i ≥ 1. Since G is compact, for every i ≥ 1, there exists
a vertex zi such that N(x) ∪ N(yi) ⊆ N(zi). We show that {zi}i≥1 is a finite set.
Since G is connected (see Theorem 1.1), we can choose a ∈ N(x). Thus a ∈ N(zi),
for every i ≥ 1. Now, from this fact that deg(a) < ∞, we deduce that {zi}i≥1 is
a finite set. Thus there exists a positive integer n such that zm = zn, for every m ≥ n.
Hence we have

⋃∞
i=1N(yi) ⊆ N(zn). From the finiteness of deg(zn), we conclude that

|⋃∞i=1N(yi)| < ∞. Therefore, there exists t ∈ ⋃∞
i=1N(yi) and k ≥ 1 such that t is

adjacent to yi, for every i ≥ k, a contradiction. The converse is clear.

An r-regular graph G is said to be strongly regular if there are integers λ and
µ such that every two adjacent vertices have λ common neighbors and every two
non-adjacent vertices have µ common neighbors. If G is a strongly regular graph with
parameters r, λ, µ, then we write G = srg(|V (G)|, r, λ, µ).

Theorem 3.2. Let G be an r-regular graph, for some positive integer r. If G is
compact, then |V (G)| ≤ 2r and G = srg(|V (G)|, r, 2r − |V (G)|, r).
Proof. Since deg(v) = r < ∞, for every vertex of G, Lemma 3.1 implies that
|V (G)| = n, for some positive integer n. If G is a complete graph, then there is
nothing to prove. Thus we can assume that G is not complete. Now, we prove the
assertion in the following steps:
Step 1. For every two non-adjacent vertices x and y, we show that N(x) = N(y). Since
G is compact, there exists a vertex, say z, such that N(x) ⊆ N(z) and N(y) ⊆ N(z).
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So, the regularity implies that N(x) = N(y) = N(z). Thus x and y have r common
neighbors.
Step 2. For every two adjacent vertices x and y, we show that |N(x)∩N(y)| = 2r−n. Let
{y1, . . . , yn−r−1} ⊆ V (G) such that x and yi are not adjacent, for every 1 ≤ i ≤ n−r−1.
Since G is compact, by Step 1, N(x) = N(yi), for every 1 ≤ i ≤ n − r − 1. Clearly,
y ∈ N(x) = N(yi), for every 1 ≤ i ≤ n − r − 1. Thus r = deg(y) ≥ n − r and so
r = dn2 e+ k, for some k ≥ 0. Hence k = r − dn2 e. Now, one can easily check that

n = |V (G)| = deg(x) + deg(y)− |N(x) ∩N(y)|.

Therefore, we have |N(x) ∩N(y)| = 2r − n, as desired.
Moreover, since G is not a null graph, we should have n ≥ 2r.

Example 3.3. The Petersen graph (see [4, p. 9]) is a 3-regular graph with 10 vertices.
By Theorem 3.2, the Petersen graph is not a compact graph.

4. CYCLES IN COMPACT GRAPHS

We start this section with the following proposition which shows that compact and
bipartite graphs are complete bipartite.

Proposition 4.1. Let G be a graph. Then G is a compact bipartite graph if and only
if G is complete bipartite.

Proof. Let G be a bipartite graph with parts X and Y . We show that G is complete
bipartite. Suppose to the contrary, x ∈ X and y ∈ Y be two non-adjacent vertices of G.
Since G is compact, there exists a vertex z such that N(x) ⊆ N(z) and N(y) ⊆ N(z).
So, z ∈ X ∩Y = ∅, a contradiction. The converse is a special case of Corollary 2.5.

From the previous proposition, we have the following immediate corollary.

Corollary 4.2. Let G be a compact graph. Then G is a tree if and only if G is a star
graph.

Now we give a necessary and sufficient condition under which a complete r-partite
graph (r ≥ 3) is compact.

Definition 4.3 (see also [7, Definition 2.9]). Let r be an integer with r ≥ 2. We call
a complete r-partite graph, together with some end vertices, a complete r-partite
graph with horns.

Theorem 4.4. Let G be a complete r-partite graph (r ≥ 3) with horns. Then G is
compact if and only if each part of the complete r-partite subgraph, which is connected
to a horn, contains exactly one vertex.

Proof. Let G be a complete r-partite graph with horns. Assume that X1, X2, . . . , Xr

are parts of the complete r-partite subgraph of G such that for every i, 1 ≤ i ≤ k ≤ r,
there exists si ∈ Xi joined with a horn Hi. First suppose that Xi = {si}, for every
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1 ≤ i ≤ k. Choose xi ∈ Xi, for every 1 ≤ i ≤ n. If x and y are two non-adjacent
vertices of G, then we have:

N(x) ∪N(y) =





⋃
i6=j Xi ⊆ N(xj); if there exists j such that k + 1 ≤ j ≤ n

and x, y ∈ Xj ,

{si} ⊆ N(xi); if there exists i such that 1 ≤ i ≤ k
and x, y ∈ Hi,

{si, sj} ⊆ N(xk); if x ∈ Hi, y ∈ Hj and i 6= j,⋃
k 6=j Xk ⊆ N(xj); if x ∈ Hi, y ∈ Xj and i 6= j.

Therefore, G is compact. Conversely, assume that G is compact. We show that
Xi = {si}, for every 1 ≤ i ≤ k. Suppose to the contrary and with no loss of generality
that X1 6= {s1}. Choose x1 ∈ X1 \{s1} and h1 ∈ H1. Then x1 and h1 are not adjacent
and we have N(x1)∪N(h1) =

⋃r
k=1Xk. Since G is compact, there exists a vertex, say

z, such that
⋃r
k=1Xk ⊆ N(z), a contradiction.

Lemma 4.5. Let G be a compact graph. If a − x − b is a path in G, then either
N(y) ⊆ N(x), for every y /∈ N(x) or a− x− b is contained in a cycle of length ≤ 4.

Proof. Let a− x− b be a path in G. Then either N(a) ∩N(b) = {x} or there exists
a vertex x 6= c ∈ N(a) ∩ N(b). First suppose that the first case occurs. If y is
a non-adjacent vertex with x, then since G is compact, there exists a vertex, say u,
such that N(x) ∪ N(y) ⊆ N(z). Thus z ∈ N(a) ∩ N(b) and so u = x. This implies
that N(y) ⊆ N(y). Now, assume that the second case occurs. Then a− x− b− c− a
is a cycle of length ≤ 4.

Proposition 4.6. Assume G is a compact graph with at least three vertices and for
any vertex x of G there exists a vertex y /∈ N(x) such that N(y) * N(x). Then any
edge in G is contained in a cycle of length ≤ 4, and therefore G is a union of triangles
and squares.

Proof. Let a − x be an edge in G. Since G is connected and contains at least three
vertices, there exists a vertex b in G with a− x− b or x− a− b paths in G. In either
case, Lemma 4.5 implies that x is contained in a cycle of length ≤ 4, so a−x is an edge
of either a triangle or a rectangle.

The following example shows that the compactness of G in the previous proposition
is necessary.

Example 4.7. The following figure gives a graph whose every vertex belongs to
a cycle, but where not every pair of vertices is contained in a cycle (see Figure 3).
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a b

c

d e

Fig. 3. The pair {b, d} contained in no cycle

Clearly, this graph is not compact. Moreover, b and d are not adjacent vertices and
N(d) * N(b).

Theorem 4.8. Let G be a compact graph with at least three vertices. If for every vertex
x of G, there is a vertex y with y /∈ N(x) such that N(y) * N(x), then every pair of
vertices in G is contained in a cycle of length ≤ 6.

Proof. Let a, b be vertices of G. If a −−b is an edge in G , then a −−b is the edge
of a triangle or rectangle by Proposition 4.6. If a − x −−b is a path in G, for some
vertex x, then a −−x −−b is contained in a cycle of length ≤ 4, by Lemma 4.5. If
a−−x−−y −−b is a path in G, for some vertices x, y, then by Lemma 4.5, we can find
cycles a−−x−−y −−c−−a and b−−y −−x−−d−−b, where c 6= x and d 6= y . This gives
a cycle a−−x−−d−−b−−y −−c−−a of length ≤ 6.

Example 4.9. The bound six in Theorem 4.8 is best possible. Consider the graph as
in Figure 4.

x

a

f e

b

d

c

Fig. 4. The pair {a, d} contained in no cycle with length less than 6

In this graph the vertices a and d are contained in a cycle of length 6 but not any
cycle of shorter length.

5. SOME FURTHER RESULTS

In this section some further properties of compact graphs are given. The following
result was proved in [7].
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Theorem 5.1 ([7, Proposition 2.6]). For a compact graph G, the following statements
are equivalent:

(1) G contains no infinite cliques;
(2) The ascending chain condition holds for neighborhoods of G;
(3) ω(G) = n for some positive integer n <∞.

In addition, if one of the three conditions hold, then ω(G) = n is the number of
mutually distinct maximal neighborhoods.

Now, we show that for a compact graph G if the ascending chain condition holds
for the set of neighbors of G, then the descending chain condition holds.

Theorem 5.2. Let G be a compact graph. If the ascending chain condition holds for
the set of neighbors of G, then the descending chain condition holds for the set of
neighbors of G.

Proof. Assume to the contrary, there exists an infinite subset {x1, x2, . . .} of V (G)
such that N(x1) ⊃ N(x2) ⊃ · · · . Then there exists yi ∈ N(xi) \ N(xi+1), for every
i ≥ 1. Since G is compact, there exists ai such that N(xi+1)∪N(yi) ⊆ N(ai), for i ≥ 1.
Since xi ∈ N(yi), we deduce that ai ∈ N(xi) \N(xi+1), for i ≥ 1. Thus if i > j ≥ 1,
then we have ai ∈ N(xj) ⊆ N(aj). Thus the set {ai}i≥1 is an infinite clique in G and
this contradicts Proposition 2.6 of [7].

The following example shows that the converse of Theorem 5.2 does not hold.

Example 5.3. LetX = {xn| n ∈ N} be a set. Assume thatG is a graph with the vertex
set V (G) = N∪X and with the edge set E(G) = {ij| i, j ∈ N}∪{ixj | i, j ∈ N and i ≥ j}.
Then it is not hard to check that G is a compact graph and the descending chain
condition holds for the set of neighbors of G; but however, N(x1) ⊂ N(x2) ⊂ . . . is
a strict non-stationary chain of neighbors of G.

In the sequel, we show that the complement graph of a compact graph is not
compact.

Theorem 5.4. If G is a compact graph, then G is not compact.

Proof. Suppose to the contrary, both of G and G are compact graphs. Thus G is
not a complete graph and so there exist two non-adjacent vertices in G, say x and y.
Therefore, there exists a vertex z such that NG(x) ∪NG(y) ⊆ NG(z). If x 6= z, then x
and z are not adjacent in G and so they are adjacent in G. Thus we have:

x ∈ NG(z) ⊆ NG(x) ∩NG(y),

which is impossible. Hence x = z. A similar proof shows that y = z. So x = y,
a contradiction.

The converse of the previous theorem does not hold in general. For instance if
G = P4, then G = G is not a compact graph.

We close this paper with the next result on disjunctive product of compact graphs.
Let G and H be two graphs. The disjunctive product of G and H is a graph whose
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vertex set is V (G)× V (H) and two distinct vertices (u1, v1) and (u2, v2) are adjacent
if and only if either u1u2 ∈ E(G) or v1v2 ∈ E(H).

Theorem 5.5. Let G and H be two graphs. Then the disjunctive product of G and
H is a compact graph if and only if both of G and H are compact graphs.

Proof. Let K be the disjunctive product of G and H. First assume that K is com-
pact. If u1 and u2 are non-adjacent vertices of G, then (u1, v) and (u2, v) are two
non-adjacent vertices of K, for every vertex v of H. Since K is compact, there
exists a vertex, say (u3, w) of K such that NK((u1, v)) ∪NK((u2, v)) ⊆ NK((u3, w)).
Now, we show that NG(u1) ∪ NG(u2) ⊆ NG(u3). To see this, with no loss of
generality, it is enough to show that NG(u1) ⊆ NG(u3). Choose x ∈ NG(u1).
Then it is clear that (x, v) ∈ NK((u1, v)) ⊆ NK((u3, w)). Since w is not ad-
jacent to v, we deduce that x ∈ NG(u3). Hence G is compact. Similarly, it is
proved that H is compact, too. Conversely, let (u1, v1) and (u2, v2) be two distinct
non-adjacent vertices of K, then neither u1u2 ∈ E(G) nor v1v2 ∈ E(H). Since both
of G and H are compact graphs, there are u3 ∈ V (G) and v3 ∈ V (H) such that
NG(u1) ∪NG(u2) ⊆ NG(u3) and NH(v1) ∪NH(v2) ⊆ NH(v3). One can easily check
that NK((u1, v1)) ∪NK((u2, v2)) ⊆ NK((u3, v3)). So, the proof is complete.
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