PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of plasma on modal dispersion characteristics of elliptical Bragg waveguide

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the dispersion characteristics of a plasma filled elliptical Bragg waveguide is investigated. The modal characteristic equations of the proposed Bragg waveguide for both ω > ωp and ω < ω p are derived. The effects of plasma frequency, numbers of cladding layers and the eccentricity of elliptical Bragg waveguide on the dispersion characteristics are studied. The analysis shows that the introduction of plasma in the proposed waveguide allows to control the propagation of modes.
Twórcy
autor
  • Department of Electronics & Communication Engineering, MNNIT, Allahabad, (U.P.) India
autor
  • Department of Electronics & Communication Engineering, BIET, Jhansi, (U.P.) India
  • Uttarakhand Technical University, Dehradun (U.K.), India
autor
  • Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi (U.P.) India
Bibliografia
  • 1. P. Yeh and A. Yariv, “Theory of Bragg fibre”, J. Opt. Soc. Am. 68, 1196–1201 (1978).
  • 2. V. Singh, Y. Prajapati, and J.P. Saini, “Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method”, Progress In Electromagnetics Research 64, 191–204 (2006).
  • 3. V. Singh, B. Prasad, and S.P. Ojha, “Analysis of the modal characteristics of a Bragg fiber with a small number of claddings using a very simple analytical method”, Microwave Opt. Techncol Lett. 46, 271–275 (2005).
  • 4. P. Yeh and A. Yariv, “Bragg reflection waveguides”, Optical Commun. 19, 427–430 (1976).
  • 5. A. Argyros, “Guided modes and loss in Bragg fibres”, Opt. Express 10, 1411–1417 (2002).
  • 6. Y. Prajapati, V. Singh, and J.P. Saini, “Modal analysis and dispersion curves of a Bragg fiber having asymmetric loop boundary”, Progress in Electromagnetics Research 87, 117–130 (2008).
  • 7. B.P. Pal, S. Dasgupta, and M.R. Shenoy, “Bragg fibre design for transparent metro networks,” Opt. Express 13, 621–624 (2005).
  • 8. A. Argyros, I.M. Bassett, M.A. van Eijkelenborg, and M.C.J. Large “Analysis of ring−structured Bragg fibres for single TE mode guidance”, Opt. Express 12, 2688–2698 (2004).
  • 9. D. Mao, Z. Ouyang, J.C. Wang, and C.P. Liu, “Single−TM−mode Bragg fibres made of magnetic materials”, Opt. Express 16, 628–635 (2008).
  • 10. M. Ibanescu, Y. Fink, S. Fan, E.L. Thomas, and J.D. Joannopoulos, “An all−dielectric coaxial waveguide”, Science 289, 415–419 (2000).
  • 11. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.
  • 12. S. Dasgupta, B.P. Pal, and M.R. Shenoy, Bragg Fibres: Guided Wave Optical Components and Devices, edited by B.P. Pal, Elsevier, Delhi, 2005.
  • 13. J.D. Chatterton and J.L. Shohet, “Guided modes and loss in a plasma filled Bragg waveguide”, J. Appl. Phys. 102, 063304 (2007).
  • 14. F.H. Northover, “The propagation of electromagnetic waves in ionized gases, Part I – Introductory theory”, IRE T. Antennas and Propagation 7, S340–S345 (1959).
  • 15. Y.M. Aliev, H. Schlüter, and A. Shivarova, Guided−Wave−Produced Plasmas, Springer – Verlag, 2000.
  • 16. A. V. Klyuchnik, S.Y. Kurganov, and Y.E. Lozovik, “Plasma optics of nanostructures”, Phys. Solid State 45, 1327–1331 (2003).
  • 17. B. Prade and J.Y. Vinet, “Guided optical waves in fibres with negative dielectric constant”, J. Lightwave Technol. 12, 6–18 (1994).
  • 18. H.M. Shen, “Plasma waveguide: A concept to transfer electromagnetic energy in space”, J. Appl. Phys. 69, 6827– 6835 (1991).
  • 19. H.M. Shen and H.Y. Pao, “The plasma waveguide with a finite thickness of cladding”, J. Appl. Phys. 70, 6653 (1991).
  • 20. H. Hoja and A. Mase, “Dispersion relation of EM waves in one dimensional Plasma photonic crystal”, J. Plasma Fusion Research 89, 177 (2004).
  • 21. B.J. Hu and C.L. Ruan, “Propagation properties of a plasma waveguide in an external magnetic field”, J. Appl. Phys. 31, 2151–2154 (1998).
  • 22. Y. Yang and L. Shenggang, “Dispersion characteristics of plasma mode in corrugated plasma waveguide”, Int. J. Infrared and Millimeter Waves 20, 1725–1730 (1999).
  • 23. V. Singh and D. Kumar, “Modal Dispersion characteristics of a Bragg fibre having plasma in the cladding regions”, Progress in Electromagnetics Research 89, 167–181 (2009).
  • 24. B.Y. Kim, J.N. Blake, S.Y. Huang, and H.J. Show, “Use of highly elliptical core fibres for two mode fibre devices”, Opt. Lett. 12, 729–731 (1987).
  • 25. M.C. Steele and B. Vural, Wave Interactions in Solid State Plasmas, McGraw−Hill, New York, 1969.
  • 26. V.L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press Ltd., 1970.
  • 27. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, vol. 1: Plasma Physics, 2nd ed., Plenum Press, New York, 1984.
  • 28. J.C.G. Vega, R.M.R. Dagnino, M.A.M. Nava, and S.C. Cerda “Mathieu functions, a visual approach” Am. J. Phys. 71, 233–242 (2003).
  • 29. J.K. Shaw, W.M. Henry, and W.R. Winfrey, “Weakly guiding analysis of elliptical core step index waveguides based on the characteristic numbers of Mathieu’s equation”, J. Lightwave Technol. 13, 2359–2371 (1995).
  • 30. D. Kumar and P.K. Choudhury, “Introduction to modes and their designation in circular and elliptical fibres”, Am. J. Phys. 75, 546–551 (2007).
  • 31. W.P. Wong and K.S. Chiang, “Design of optical strip loaded waveguides with zero modal birefringence ” J. Lightwave Technol. 16, 1240–1248 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d54dd97-0ecd-44d6-ae65-29c1af2feb3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.