Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A conspicuous annual variation in the photon flux density of ~10-12 W·m-2 by a photomultiplier tube housed in a hyperdark ground level setting was within the range expected for the small changes in the earth’s distance per orbit from the energetic entropy (Joules) of the singularity at the center of the galaxy. For the Bekenstein-Hawking relation to be congruent the singularity’s power must reflect the galaxy’s age. The power (W) per volume at the distance of the earth when divided into the peak-to-trough change in photon flux density for minimum-maximum distances from the galactic center converged with the Compton wavelength for an electron. Subsequent calculations indicated that the discrepancy between the magnetic moments of the orbit/spin of the electron and of the proton when the energy associated with the neutral hydrogen line is involved with the Bohr atom also solve for the Compton electron wavelength. The most likely local mechanism to satisfy the hyperfine currents that are in the order of 10-15 A within the width of plasma membrane phenomena would be proton channels when pH ranges from about 5.8 to 7.4 which can occur transiently near neurons. The measured photon flux densities multiplied by known diffusion velocities of protons in water could produce energy levels of ~10-20 J per square unit of time. The results suggest the potential for collapsing de Broglie particle-wave properties of an electron involves energies associated with neuronal action potentials coupled to cognition and that this potential may be spread through the galactic volume as pervasive photon flux densities originating from the singularity at the center.
Rocznik
Tom
Strony
60--65
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
- Laurentian University, Sudbury, P3E 2C6, Ontario, Canada
Bibliografia
- [1] S. Redfield, J. Linsky, Astrophysics Journal 583 (2008) 283-314.
- [2] K. S. Saroka, M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 20 (2014) 166-194.
- [3] T. E. Decoursey, Physiology Reviews 83 (2002) 475-579.
- [4] N. W. Davis, H. D. Lux, M. Morad, Journal of Physiology 400 (1988) 159-187.
- [5] R. R. Llinas, D. Pare, Neuroscience 44 (1991) 521-535.
- [6] M. A. Persinger, S. A. Koren, International Journal of Neuroscience 117 (2007) 157-175.
- [7] M. A. Persinger, B. T. Dotta, K. S. Saroka, World Journal of Neuroscience 3 (2013) 10-16.
- [8] M. A. Persinger, S. A. Koren, International Journal of Chemistry, Physics and Astronomy 6 (2013) 10-13.
- [9] P. Vallee, J. Lafait, P. Metre, M-O. Monod, Y. Thomas, Journal of Chemical Physics 122 (2005) 114513.
- [10] B-h. Chai, J-m. Zheng, Q. Zhao, G. H. Pollack, Journal of Physical Chemistry 112 (2008) 2422-2247.
- [11] M. A. Persinger, S. A. Koren, International Journal of Chemistry, Physics and Astronomy 3 (2015) 106-112.
- [12] M. A. Persinger, Current Medicinal Chemistry 17 (2010) 3094-3098.
- [13] D. Hutsemekers, L. Braibant, V. Pelgrims, D. Sluse, Astronomy & Astrophysics (2014), 1-7 no. aa24631.
- [14] A. Eddington, “Nature of the Physical World” U. Michigan Press, 1981.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d50a3d0-940e-44dd-be41-b9e48cd6104a